Homework 1

Due: Friday, January 27

1. Describe all points of $\operatorname{Spec} \mathbb{Q}[x]$.
2. (a) Let $f=x^{3}-8 \in \mathbb{Z}[x]$. For each point $[\mathfrak{p}] \in \operatorname{Spec} \mathbb{Z}[x]$ listed below, compute the residue field $\kappa([\mathfrak{p}])$, and evaluate $f([\mathfrak{p}])$.
i. [(3)]
ii. $[(x-1)]$
iii. $\left[\left(x^{2}+1\right)\right]$
iv. $\left[\left(x^{2}+1,3\right)\right]$
(b) Find a ring A and a function $f \in A$ such that f is zero at every point of $\operatorname{Spec} A$, but A is not the zero function. (HINT: See HW11\#1 from last semester.)
3. (a) Find rings A and B such that $A \not \equiv B$ but $\operatorname{Spec} A$ and Spec B are homeomorphic (as topological spaces).
(b) Find rings A and B such that $A \not \approx B,|\operatorname{Spec} A|$ is in bijection with $|\operatorname{Spec} S|$, but $\operatorname{Spec} A$ and Spec B are not homeomorphic.
(HINT: For (a), you can arrange so that $|\operatorname{Spec} A|$ and $|\operatorname{Spec} B|$ each consist of a single point; for (b), there's an example in which each set has two points.)
4. Suppose $[\mathfrak{p}] \in \operatorname{Spec} A$. Show that $[\mathfrak{p}]$ is closed if and only if \mathfrak{p} is a maximal ideal in A.
5. Suppose X is an affine variety over the algebraically closed field k, with coordinate ring $k[X]$. Show that there is a bijection between:

- Closed points of the affine scheme Spec $k[X]$.
- Points of the variety X.

Go read the blog entry Mumford's treasure map, available at
http://www.neverendingbooks.org/mumfords-treasure-map

