Homework 9 Due: Friday, October 21

1. Cremona, revisited Consider the rational map

$$\mathbb{P}^2 \dashrightarrow \overset{\phi}{\dashrightarrow} \mathbb{P}^2$$

$$[a_0, a_1, a_2] \longmapsto [a_1a_2, a_0a_2, a_0a_1]$$

defined on $\mathbb{P}^2 - \{[1,0,0], [0,1,0], [0,0,1]\}$. Let X_0 , X_1 and X_2 be coordinates on the first copy of \mathbb{P}^2 , and let Y_0 , Y_1 and Y_2 be coordinates on the second copy.

The closure in $\mathbb{P}^2 \times \mathbb{P}^2$ of the graph of ϕ is the correspondence $Z \subset \mathbb{P}^2 \times \mathbb{P}^2$ given by

$$Z = \mathcal{Z}_{\mathbb{P}}(X_0Y_0 - X_1Y_1, X_1Y_1 - X_2Y_2).$$

Let $P = [a_0, a_1, a_2].$

- (a) Suppose $a_0a_1a_2 \neq 0$. What is Z[P]?
- (b) Suppose $a_0 = 0$, $a_1a_2 \neq 0$. What is Z[P]?
- (c) Suppose $a_0 = a_1 = 0$, $a_2 \neq 0$. What is Z[P]?
- 2. Recall the curve from class C = Z_A(y² − (x³ + 4x²)). Show that k[C] is not integrally closed in its field of fractions, k(C). (HINT: *Consider* ^y/_x.)
 Extra: What is the integral closure of k[C] in k(C)?
- 3. The blowup of \mathbb{A}^2 at (0,0) is $\mathcal{Z}(xV_1 yV_0)$, where *x* and *y* are coordinates on \mathbb{A}^2 and V_0 and V_1 are coordinates on \mathbb{P}^1 . Let π be the projection $\pi : \mathcal{Z}(xV_1 yV_0) \to \mathbb{A}^2$. Let $D = \mathcal{Z}(x^2 - y^2 - x^4 - y^4) \subset \mathbb{A}^2$.
 - (a) What is $\pi^{-1}(D \{(0,0)\}) \subset \mathbb{A}^2 \times \mathbb{P}^1$?
 - (b) What is $\pi^{-1}((0,0))$?
 - (c) Let \widetilde{D} be the closure of $\pi^{-1}(D \{0\})$ in $\mathbb{A}^2 \times \mathbb{P}^1$. What is $\widetilde{D} \cap \pi^{-1}((0,0))$?
- 4. *Linearization* If $f \in k[x_1, \dots, x_n]$, and $P = (a_1, \dots, a_n) \in \mathbb{A}^n$, the *linearization of f at P is*

$$d_P(f) = f(P) + \sum_{i=1}^n \left(\frac{\partial}{\partial x_i}f\right)(P)(x_i - a_i).$$

Suppose that $I = (f_1, \dots, f_r) \subset k[x_1, \dots, x_n]$ and that $P \in \mathcal{Z}(I)$. Let $d_P(I)$ be the ideal generated by the linearizations of all elements of *I*:

$$d_P(I) = (\{d_P(f) : f \in I\})k[x_1, \cdots, x_n].$$

Show that $d_P(I) = (d_P(f_1), \dots, d_P(f_r))$. (HINT: If $f \in I$ and $g \in k[x_1, \dots, x_n]$, what is $d_P(fg)$?)

Professor Jeff Achter Colorado State University Math 672: Projective Geometry Fall 2016