Homework 9

Due: Friday, October 21

1. Cremona, revisited Consider the rational map

$$
\begin{gathered}
\mathbb{P}^{2} \ldots \underline{\phi} \cdots \mathbb{P}^{2} \\
{\left[a_{0}, a_{1}, a_{2}\right] \longmapsto\left[a_{1} a_{2}, a_{0} a_{2}, a_{0} a_{1}\right]}
\end{gathered}
$$

defined on $\mathbb{P}^{2}-\{[1,0,0],[0,1,0],[0,0,1]\}$. Let X_{0}, X_{1} and X_{2} be coordinates on the first copy of \mathbb{P}^{2}, and let Y_{0}, Y_{1} and Y_{2} be coordinates on the second copy.
The closure in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ of the graph of ϕ is the correspondence $Z \subset \mathbb{P}^{2} \times \mathbb{P}^{2}$ given by

$$
Z=\mathcal{Z}_{\mathbb{P}}\left(X_{0} Y_{0}-X_{1} Y_{1}, X_{1} Y_{1}-X_{2} Y_{2}\right)
$$

Let $P=\left[a_{0}, a_{1}, a_{2}\right]$.
(a) Suppose $a_{0} a_{1} a_{2} \neq 0$. What is $Z[P]$?
(b) Suppose $a_{0}=0, a_{1} a_{2} \neq 0$. What is $Z[P]$?
(c) Suppose $a_{0}=a_{1}=0, a_{2} \neq 0$. What is $Z[P]$?
2. Recall the curve from class $C=\mathcal{Z}_{\mathbb{A}}\left(y^{2}-\left(x^{3}+4 x^{2}\right)\right)$. Show that $k[C]$ is not integrally closed in its field of fractions, $k(C)$. (HINT: Consider $\frac{y}{x}$.)
Extra: What is the integral closure of $k[C]$ in $k(C)$?
3. The blowup of \mathbb{A}^{2} at $(0,0)$ is $\mathcal{Z}\left(x V_{1}-y V_{0}\right)$, where x and y are coordinates on \mathbb{A}^{2} and V_{0} and V_{1} are coordinates on \mathbb{P}^{1}. Let π be the projection $\pi: \mathcal{Z}\left(x V_{1}-y V_{0}\right) \rightarrow \mathbb{A}^{2}$.
Let $D=\mathcal{Z}\left(x^{2}-y^{2}-x^{4}-y^{4}\right) \subset \mathbb{A}^{2}$.
(a) What is $\pi^{-1}(D-\{(0,0)\}) \subset \mathbb{A}^{2} \times \mathbb{P}^{1}$?
(b) What is $\pi^{-1}((0,0))$?
(c) Let \widetilde{D} be the closure of $\pi^{-1}(D-\{0\})$ in $\mathbb{A}^{2} \times \mathbb{P}^{1}$. What is $\widetilde{D} \cap \pi^{-1}((0,0))$?
4. Linearization If $f \in k\left[x_{1}, \cdots, x_{n}\right]$, and $P=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{A}^{n}$, the linearization of f at P is

$$
d_{P}(f)=f(P)+\sum_{i=1}^{n}\left(\frac{\partial}{\partial x_{i}} f\right)(P)\left(x_{i}-a_{i}\right) .
$$

Suppose that $I=\left(f_{1}, \cdots, f_{r}\right) \subset k\left[x_{1}, \cdots, x_{n}\right]$ and that $P \in \mathcal{Z}(I)$. Let $d_{P}(I)$ be the ideal generated by the linearizations of all elements of I :

$$
d_{P}(I)=\left(\left\{d_{P}(f): f \in I\right\}\right) k\left[x_{1}, \cdots, x_{n}\right] .
$$

Show that $d_{P}(I)=\left(d_{P}\left(f_{1}\right), \cdots, d_{P}\left(f_{r}\right)\right)$. (Hint: If $f \in I$ and $g \in k\left[x_{1}, \cdots, x_{n}\right]$, what is $d_{P}(f g)$?)

