Homework 8 Due: Friday, October 14

1. Recall that the (degree three) Veronese embedding

$$\mathbb{P}^1 \xrightarrow{\nu = \nu_{1,3}} \mathbb{P}^3$$

$$[a,b] \longmapsto [a^3,a^2b,ab^2,b^3]$$

has image $V_{1,3} = \mathcal{Z}_{\mathbb{P}}(F_0, F_1, F_2)$, where

$$F_0 = Y_0 Y_2 - Y_1^2$$

$$F_1 = Y_0 Y_3 - Y_1 Y_2$$

$$F_2 = Y_1 Y_3 - Y_2^2$$

Show that for each $0 \le i < j \le 2$, $\mathcal{Z}_{\mathbb{P}}(F_i, F_j) \supseteq V_{1,3}$, but all irreducible components of $\mathcal{Z}_{\mathbb{P}}(F_i, F_j)$ have dimension 1.

This shows that imposing an extra equation need not force the dimension to drop.

2. *Elimination theory, revisited* Suppose $Z = \mathcal{Z}_{\mathbb{P}^m \times \mathbb{A}^n}(I)$, where $I \subset k[X_0, \dots, X_m, y_1, \dots, y_n]$ is homogeneous in the X_i 's.

The projective elimination ideal is

$$\hat{I} = \left\{ h \in k[y_1, \cdots, y_n] : \exists d > 0 : (X_0, \cdots, X_n)^d h \subset I \right\}$$

Suppose $[a_0, \dots, a_m] \times (b_1, \dots, b_m) \in \mathbb{Z}$ and $h \in \hat{I}$. Show that $h(b_1, \dots, b_m) = 0$. This shows $p_2(\mathbb{Z}) \subseteq \mathbb{Z}_{\mathbb{A}^n}(\hat{I})$. In fact, one can show that $p_2(\mathbb{Z}) = \mathbb{Z}_{\mathbb{A}^n}(\hat{I})$, which provides a proof that the map $p_2 : \mathbb{P}^m \times \mathbb{A}^n \to \mathbb{A}^n$ is closed.

3. Consider the morphism

$$\mathbb{P}^1 \xrightarrow{\phi} \mathbb{P}^2$$

$$[a,b]\longmapsto [a^3,a^2b+ab^2,b^3]$$

This induces a map of homogeneous coordinate rings

$$k_h[\mathbb{P}^2] \longrightarrow k_h[\mathbb{P}^1]$$

$$X \longmapsto S^3$$

$$Y \longmapsto S^2T + ST^2$$

$$Z \longmapsto T^3$$

Professor Jeff Achter Colorado State University Math 672: Projective Geometry Fall 2016

- (a) Describe the bihomogeneous ideal $I \subset k[S, T, X, Y, Z]$ such that $\mathcal{Z}(I) = \Gamma_{\phi}$, the graph of ϕ .
- (b) Explain, in the notation of the previous problem, how to compute $\mathcal{I}_{\mathbb{P}^2}(\phi(\mathbb{P}^1))$, the ideal which defines the image of ϕ .

Extra: Using a computer algebra package if you like, compute $\mathcal{I}_{\mathbb{P}^2}(\phi(\mathbb{P}^1))$.

- 4. (a) Suppose *X* is a projective irreducible group variety. Prove that the group law on *X* is commutative.
 - (b) A *ring variety* is a variety *X* equipped with

addition A morphism $\alpha : X \times X \to X$; multiplication A morphism $\mu : X \times X \to X$; additive inverse A morphism $\iota : X \to X$; additive identity An element $\zeta \in X$

such that (X, α, ζ) is a group variety, and multiplication satisfies the obvious axioms. Suppose that *X* is a projective irreducible ring variety. Prove that the multiplication map must be trivial.

You may, and should, use basic properties of rings.

5. In class, we will prove a very geometric version of Noether's normalization lemma:

Theorem Suppose $X \subset \mathbb{P}^n$ is an irreducible subvariety, dim X = r. Then there is a linear subspace $E \subset \mathbb{P}^n$ of dimension n - r - 1 such that $E \cap X = \emptyset$. Fix any such E. The projection π_E yields a finite-to-one map

$$X \xrightarrow{\pi_E} \mathbb{P}^r$$

The homogeneous coordinate ring $k_h[X] = k[X_0, \dots, X_n]/I(X)$ is a finitely generated module over $k[Y_0, \dots, Y_r] = k_h[E]$.

Explain how to deduce the version usually stated in commutative algebra books:

Let R be a finitely generated algebra over an algebraically closed field k. Then there exist elements $y_1, \dots, y_r \in R$, algebraically independent over k, such that R is finite as a $k[y_1, \dots, y_r]$ -module.

(Actually, this is true for an arbitrary, not-necessarily-algebraically-closed base field *k*.)

Professor Jeff Achter Colorado State University