Homework 7

Due: Friday, October 7

1. Veronese embeddings (I)

Consider the map $v=v_{1, d}$ given by

$$
\begin{aligned}
& \mathbb{P}^{1} \xrightarrow{v} \mathbb{P}^{d} \\
& {\left[a_{0}, a_{1}\right] \longmapsto\left[a_{0}^{d}, a_{0}^{d-1} a_{1}, \cdots, a_{0} a_{1}^{d-1}, a_{1}^{d}\right] .}
\end{aligned}
$$

(a) Show that v really is a morphism.
(b) Prove that it is injective.
2. Veronese (II) Let $I=I_{1, d} \subset K\left[Y_{0}, \cdots, Y_{d}\right]$ be the homogeneous ideal generated by quadrics:

$$
I=\left\langle Y_{i} Y_{j}-Y_{k} Y_{\ell}: 0 \leq i, j, k, \ell \leq d, i+j=k+l\right\rangle
$$

Let $V=V_{1, d}$ be the projective vanishing locus

$$
V=\mathcal{Z}_{\mathbb{P}}(I)
$$

Show that $v\left(\mathbb{P}^{m}\right)=V$.
In fact, for every m and d there is a similar inclusion $\mathbb{P}^{m} \hookrightarrow \mathbb{P}^{\binom{m+d}{d}}$; the image is a projective variety whose ideal is generated by quadrics.
3. If $X=\mathcal{Z}_{\mathbb{P}}(I) \subset \mathbb{P}^{n}$, its homogeneous coordinate ring is the graded ring $k_{h}[X]=k\left[X_{0}, \cdots, X_{n}\right] / I$. (If we forget about the grading, this is just the (usual) coordinate ring of the affine cone over X.)

Suppose that X is irreducible. The homogeneous localization of $k_{h}[X]$ at (0) is

$$
k_{h}[X]_{(0)}=\left\{\frac{f}{g}: f, g \in k_{h}[X], g \neq 0, f \text { and } g \text { homogeneous, } \operatorname{deg} f=\operatorname{deg} g\right\}
$$

Explain how to build an isomorphism

$$
k(X) \longrightarrow k_{h}[X]_{(0)} ;
$$

you need not actually prove your map is an isomorphism. (HINT: Remember, elements of $k(X)$ are represented by (U, ϕ), where U is a nonempty open subset and ϕ is a regular function on U.)
4. In spite of its name, the homogeneous coordinate ring depends not just on the variety, but on the embedding. Show that

$$
k_{h}\left[\mathbb{P}^{1}\right] \not \approx k_{h}\left[V_{1,2}\right] .
$$

If you like, let $\mathfrak{m}=\left(Y_{0}, Y_{1}, Y_{2}\right) k_{h}\left[V_{1,2}\right]$. What is $\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}$? Show that no maximal ideal of $k_{h}\left[\mathbb{P}^{1}\right]$ has this property.

