Homework 6 Due: Friday, September 30

If $\phi : X \dashrightarrow Y$, the domain of $\phi \operatorname{dom}(\phi)$ is the largest subset where ϕ is represented by a morphism.

1. (a) Let *R* be a ring, and let $f, g \in R[t]$ be polynomials. Suppose that

$$f(x) = g(1/x).$$

Show that deg f = deg = 0, and thus $f = g \in R$. If R = k, this finishes the proof from class that any regular function on \mathbb{P}^1 is constant.

(b) Suppose ϕ is a regular function on \mathbb{P}^n . Show that ϕ is a constant. (HINT: *On* $U_i \cap U_j$, *represent* ϕ *as*

$$\phi = f(X_0/X_i, \cdots, X_n/X_i)$$

= g(X_0/X_j, \cdots, X_n/X_i);

view f as a polynomial in the variable X_i/X_i with coefficients in the field

$$R = k(X_0, \cdots, \widehat{X}_i, \widehat{X}_j, \cdots, X_n),$$

(omit X_i and X_j), and view g as a polynomial in X_j/X_i with coefficients in the same ring.)

- 2. Prove that a rational map $\phi : \mathbb{P}^1 \dashrightarrow \mathbb{P}^n$ is actually regular.
- 3. (a) Let ϕ be the rational function on \mathbb{P}^2 given by $\phi = X_1/X_0$. What is dom(ϕ)?
 - (b) Now, think of this function as a rational map from \mathbb{P}^2 . Compose this with the inclusion $\mathbb{A}^1 \hookrightarrow \mathbb{P}^1$, $t \mapsto [t, 1]$, to get a rational map $\overline{\phi} : \mathbb{P}^2 \dashrightarrow \mathbb{P}^1$. What is dom $(\overline{\phi})$?
- 4. Cremona transformations Consider the rational map

$$\mathbb{P}^2 \longrightarrow \mathbb{P}^2$$
$$[a_0, a_1, a_2] \longmapsto [a_1 a_2, a_0 a_2, a_0 a_1]$$

- (a) What is dom(ϕ)?
- (b) Show that ϕ is birational, and is its own inverse.
- (c) Find open subsets $U, V \subset \mathbb{P}^2$ such that $\phi|_U : U \to V$ is an isomorphism.

Professor Jeff Achter Colorado State University Math 672: Projective Geometry Fall 2016