Homework 6

Due: Friday, September 30

If $\phi: X \rightarrow Y$, the domain of $\phi \operatorname{dom}(\phi)$ is the largest subset where ϕ is represented by a morphism.

1. (a) Let R be a ring, and let $f, g \in R[t]$ be polynomials. Suppose that

$$
f(x)=g(1 / x) .
$$

Show that $\operatorname{deg} f=\operatorname{deg}=0$, and thus $f=g \in R$. If $R=k$, this finishes the proof from class that any regular function on \mathbb{P}^{1} is constant.
(b) Suppose ϕ is a regular function on \mathbb{P}^{n}. Show that ϕ is a constant. (Hint: On $U_{i} \cap U_{j}$, represent ϕ as

$$
\begin{aligned}
\phi & =f\left(X_{0} / X_{i}, \cdots, X_{n} / X_{i}\right) \\
& =g\left(X_{0} / X_{j}, \cdots, X_{n} / X_{i}\right) ;
\end{aligned}
$$

view f as a polynomial in the variable X_{j} / X_{i} with coefficients in the field

$$
R=k\left(X_{0}, \cdots, \widehat{X}_{i}, \widehat{X}_{j}, \cdots, X_{n}\right),
$$

(omit X_{i} and X_{j}), and view g as a polynomial in X_{j} / X_{i} with coefficients in the same ring.)
2. Prove that a rational map $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ is actually regular.
3. (a) Let ϕ be the rational function on \mathbb{P}^{2} given by $\phi=X_{1} / X_{0}$. What is $\operatorname{dom}(\phi)$?
(b) Now, think of this function as a rational map from \mathbb{P}^{2}. Compose this with the inclusion $\mathbb{A}^{1} \hookrightarrow \mathbb{P}^{1}, t \mapsto[t, 1]$, to get a rational map $\bar{\phi}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$. What is $\operatorname{dom}(\bar{\phi})$?
4. Cremona transformations Consider the rational map

$$
\begin{gathered}
\mathbb{P}^{2} \cdots \stackrel{\phi}{ } \\
{\left[a_{0}, a_{1}, a_{2}\right] \longmapsto\left[a_{1} a_{2}, a_{0} a_{2}, a_{0} a_{1}\right]}
\end{gathered}
$$

(a) What is $\operatorname{dom}(\phi)$?
(b) Show that ϕ is birational, and is its own inverse.
(c) Find open subsets $U, V \subset \mathbb{P}^{2}$ such that $\left.\phi\right|_{U}: U \rightarrow V$ is an isomorphism.

