Homework 5

Due: Friday, September 23

1. Let S be a graded ring, and let I and J be homogeneous ideals in S. Prove that each of the following is a homogeneous ideal .
(a) $I+J$.
(b) $I \cap J$.
(c) $I J$.
(d) \sqrt{I}.

You may, of course, assume that each of these is actually an ideal...
2. Let $F=A_{0} X_{0}+A_{1} X_{1}+A_{2} X_{2}$ and let $G=B_{0} X_{0}+B_{1} X_{1}+B_{2} X_{2}$, where at least one A_{i} and at least one B_{j} are nonzero. Consider the lines in the projective plane $L=\mathcal{Z}_{\mathbb{P}}(F) \subset \mathbb{P}^{2}$ and $M=\mathcal{Z}_{\mathbb{P}}(G) \subset \mathbb{P}^{2}$.
(a) Show that $L=M$ if and only if there exists some $\lambda \in k^{\times}$such that, for each $i, B_{i}=\lambda A_{i}$.
(b) Suppose $L \neq M$. Prove that the intersection $L \cap M$ consists of a unique point, P.
(c) Suppose $L \neq M$. Give a criterion for when $L \cap M \in H_{0}$.
3. Let $F=X_{0} X_{2}^{2}-X_{1}^{3}-X_{0} X_{1}^{2}$, and let $C=\mathcal{Z}_{\mathbb{P}}(F)$. Describe $C \cap U_{i}$ and $C \cap H_{i}$ for each coordinate $i=0,1,2$.

Turn the page for a proof of Chow's theorem. It doesn't have all that much to do with what we're studying, except that the method of proof is much like the one we used to show that $\mathcal{I}_{\mathbb{P}}(X)$ is a homogeneous ideal.
4. This problem is only valid over \mathbb{C}, and compares analytic objects to algebraic objects. Let π be the natural projection

$$
\mathbb{C}^{n+1}-\{0\} \xrightarrow{\pi} \mathbb{P}_{\mathrm{C}}^{n}
$$

Say that a function f on \mathbb{C}^{n+1} is analytic in a neighborhood of the origin if there is a convergent power series

$$
\sum_{\underline{e}=e_{0}, \cdots, e_{n}: e_{j} \in \mathbb{Z}_{\geq 0}} a_{\underline{e}} X_{0}^{e_{0}} \cdots X_{n}^{e_{n}} .
$$

which agrees with f on some (analytic) neighborhood of 0 .
Suppose $X \subset \mathbb{P}_{C}^{n}$; let $Z=\mathcal{C}(X)=\pi^{-1}(X) \cup\{0\}$ be the affine cone over X.
Suppose f is analytic in some neighborhood of the origin. Write

$$
\begin{aligned}
f(z) & =\sum_{d \geq 0} f_{d}(z) \\
f_{d}(z) & =\sum_{e: \sum e_{i}=d} a_{e} z_{0}^{e_{0}} \cdots z_{n}^{e_{n}} .
\end{aligned}
$$

Prove that if f vanishes on Z (in some neighborhood of the origin), then each f_{d} vanishes on Z.

If you like, you may proceed in the following way.
Define the function $g(z, t)=f(t z)$; here, $z \in \mathbb{A}_{\mathbb{C}}^{n+1}$, and $t \in \mathbb{C}$.
(a) Show $g(z, t)$ vanishes on Z for (sufficiently small) t.
(b) For a fixed value of z, consider the analytic function $g_{z}(t)=g(z, t)=f(t z)$. Show that the $s^{t h}$ derivative of $g_{z}(t)$ is

$$
\frac{d^{s}}{d t^{s}} g_{z}(t)=\sum_{d \geq s} \frac{d!}{(d-s)!} f_{d}(z) t^{d-s}
$$

(c) Show that $f_{d}(z)$ vanishes on Z. (Hint: Set $t=0$, and take a Taylor series expansion of $g_{z}(t)$ centered at $t=0$.)
5. Continuation of 4

Prove Chow's Theorem: Suppose $X \subset \mathbb{P}_{C}^{n}$ is a closed analytic space, in the sense that there is a collection of functions $\left\{g_{\alpha}\right\}$ on X such that $f_{\alpha}:=g_{\alpha} \circ \pi$ is analytic on \mathbb{A}^{n+1}, and X is the vanishing locus of the g_{α} 's. Show that X is algebraic, in the sense that it is the vanishing locus of a (finite) collection of homogeneous polynomials. It suffices to show that $\mathcal{C}(X)$ is the vanishing locus of polynomials.

