## Homework 4

Due: Friday, September 16

1. Let $X \subset \mathbb{A}^{n}$ be an algebraic set. Show that the following are equivalent:
(a) $X$ is irreducible;
(b) $\mathcal{I}(X) \subset k\left[x_{1}, \cdots, x_{n}\right]$ is a prime ideal;
(c) $k[X]$ is an integral domain.
2. (a) Let

$$
\Delta_{\mathbb{A}^{n}}=\left\{(P, P): P \in \mathbb{A}^{n}\right\} \subset \mathbb{A}^{n} \times \mathbb{A}^{n} \cong \mathbb{A}^{2 n} .
$$

Let $x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}$ be coordinates on $\mathbb{A}^{n} \times \mathbb{A}^{n} \cong \mathbb{A}^{2 n}$. What is $\mathcal{I}\left(\Delta_{\mathbb{A}^{n}}\right)$ ? Show that $\Delta_{\mathbb{A}^{n}}$ is closed.
(b) Suppose $V \subset \mathbb{A}^{n}$ is closed. Show that

$$
\Delta_{V}:=\{(P, P) ; P \in V\} \subset \mathbb{A}^{n} \times \mathbb{A}^{n}
$$

is closed. (Hint: $V \times V \subset \mathbb{A}^{2 n}$ is closed.)
3. Let $\phi: V \rightarrow W$ be a morphism.
(a) The graph of $\phi$ is

$$
\Gamma_{\phi}:=\{(P, \phi(P)): P \in V\} \subset V \times W
$$

Show that $\Gamma_{\phi}$ is closed. (HINT: Consider the inverse image of $\Delta_{W}$ under $\left(\phi \times \mathrm{id}_{W}\right): V \times$ $W \rightarrow W \times W$.)
(b) Let $\psi: V \rightarrow W$ be a morphism. Show that $\{x \in V: \phi(x)=\psi(x)\}$ is closed.
4. Let $V$ and $W$ be $k$-vector spaces of dimensions $m$ and $n$, respectively. After choosing a basis on $V$ and $W$, we may identify $\mathbb{A}^{m n}$ with (the set of $m \times n$ matrices with entries in $k$, and thus with) $\operatorname{LinMap}(V, W)$.
(a) Suppose $\operatorname{dim} V=\operatorname{dim} W$. Prove that the set of elements of $\operatorname{LinMap}(V, W)$ which are actually isomorphisms is a Zariski open subset of $\operatorname{LinMap}(V, W)$.
(b) Let $r$ be a nonnegative integer. Show that the set

$$
M_{r}:=\{\alpha \in \operatorname{LinMap}(V, W): \operatorname{dim}(\alpha(V)) \leq r\}
$$

is a Zariski closed subset of $\operatorname{Lin} \operatorname{Map}(V, W)$. (Here, dim means dimension as vector space.)
5. If $X$ is a topological space, the topological dimension of $X, \operatorname{tdim}(X)$, is the supremum of the lengths of all chains

$$
Z_{0} \subsetneq Z_{1} \subsetneq \cdots \subsetneq Z_{n}
$$

where each $Z_{i}$ is a closed, irreducible subset of $X$.
If $R$ is a ring, the height of a prime ideal $\mathfrak{p} \subset R$ is the supremum of the lengths of all chains

$$
\mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \cdots \mathfrak{p}_{n}=\mathfrak{p}
$$

of distinct prime ideals. The Krull dimension of $R, \operatorname{kdim} R$, is the supremum of the heights of all prime ideals.
Let $Y$ be an irreducible affine variety.
(a) Prove that $\operatorname{tdim}(Y)=\operatorname{kdim}(k[Y])$.
(b) Use the following result from commutative algebra to show that $\operatorname{tdim}(Y)=\operatorname{dim}(Y)$.

Theorem Let $R$ be an integral domain which is finitely generated as a $k$-algebra, and let $K$ be the fraction field of $R$. Then

$$
\operatorname{kdim} R=\operatorname{trdeg}(K / k) ;
$$

the Krull dimension of $R$ is the transcendence degree of $K$ over $k$.

