Homework 3 Due: Friday, September 9

1. If $f \in k[x_1, \dots, x_n]$, the associated distinguished¹ affine open set is

$$D(f) := \{ P \in \mathbb{A}^n : f(P) \neq 0 \}.$$

- (a) Suppose $f, g \in k[x_1, \dots, x_n]$. Show that $D(fg) = D(f) \cap D(g)$.
- (b) Show that the collection of distinguished open sets in Aⁿ is a basis for the Zariski topology on Aⁿ.

Recall that if X is a topological space, then a collection of open subsets C is a basis for the topology on X if for every open set U of X, and each $x \in U$, there is some $V \in C$ such that

$$x \in V \subseteq U.$$

2. (a) A topological space *X* is called quasicompact if every open cover admits a finite subcover.

Suppose C is a basis for the topology of X. Prove that X is quasicompact if and only if every open covering $X = \bigcup_{\alpha} U_{\alpha}$ with $U_{\alpha} \in C$ admits a finite subcover.

- (b) Prove that \mathbb{A}^n is quasicompact.
- 3. Let $H = \mathcal{Z}(x_1x_2 1) \subset \mathbb{A}^2$, and let \mathbb{A}^1 be the affine line with coordinate *t*, so that $k[\mathbb{A}^1] = k[t]$.

Consider the morphism

$$H \xrightarrow{\phi} \mathbb{A}^1$$

$$(a_1, a_2) \longmapsto a_1$$

- (a) Describe the map $\phi^* : k[\mathbb{A}^1] \to k[H]$.
- (b) Is ϕ^* injective? Surjective?
- (c) Describe the image of ϕ . Is it a closed subset of \mathbb{A}^1 ?
- 4. Consider the morphism

$$\mathbb{A}^2 \xrightarrow{\beta} \mathbb{A}^2$$
$$(a_1, a_2) \longmapsto (a_1, a_1 a_2)$$

Professor Jeff Achter Colorado State University Math 672: Projective Geometry Fall 2016

¹or principal, or standard, or basic

- (a) Is β injective? Explain.
- (b) Is β surjective? Explain.
- (c) Describe open subsets $U \subset \mathbb{A}^2$ and $V \subset \mathbb{A}^2$ such that β gives an isomorphism $\beta|_U : U \to V$.
- 5. (a) Let $W \subset \mathbb{A}^n$ be closed, and suppose that $U \subset W$. Show that $\mathcal{I}(U) = \mathcal{I}(W)$ if and only if *U* is dense in *W*.
 - (b) Let $\phi : V \to W$ be a morphism. Show that the image of ϕ is dense in *W* if and only if $\phi^* : k[W] \to k[V]$ is injective. *Such a morphism is called* dominant.