Homework 2 Due: Friday, September 2

Material for problems 3, 4 and 5 will be covered in class the week of August 29.

- 1. Let ϕ : $R \to S$ be a ring homomorphism, and let $J \subset S$ be an ideal. Let $I = \phi^{-1}(J)$.
 - (a) Show that *I* is an ideal of *R*.
 - (b) Show that if *J* is prime, then *I* is prime.
 - (c) Give an example to show that even if *J* is maximal, *I* need not be maximal.
- 2. Suppose that $R = k[x_1, \dots, x_m]/\mathfrak{a}$ and $S = k[y_1, \dots, y_n]/\mathfrak{b}$, where *k* is algebraically closed. Let $\phi : R \to S$ be a ring homomorphism. Show that if $J \subset S$ is maximal, then $\phi^{-1}(J)$ is maximal.
- 3. Let *k* be an algebraically closed field, and suppose $f_1, \dots, f_r \in k[x_1, \dots, x_n]$. Show that there is no common solution $f_1 = f_2 = \dots = f_r = 0$ if and only if there are $a_1, \dots, a_r \in k[x_1, \dots, x_n]$ such that

$$\sum_{i=1}^r a_i f_i = 1.$$

4. (a) Find polynomials

$$a(x) = \sum_{j=0}^{4} a_i x^i$$
 and $b(x) = \sum_{j=0}^{4} b_j x^j$

such that

$$a(x) \cdot (x^2 + 1) + b(x) \cdot (x^3 + 1) = 1.$$

(HINT: Solve for a_i and b_i .)

(b) Suppose $f_1, \dots, f_r \in k[x_1, \dots, x_n]$ have no common zero. Suppose you know there is an *N* such that there are polynomials $g_1, \dots, g_r \in k[x_1, \dots, x_n]$ such that deg $f_i g_i \leq N$ and

$$\sum f_i g_i = 1.$$

Explain (briefly) how you would use linear algebra to find such polynomials.

An *effective nullstellensatz* gives a computable value of *N* in terms of *n*, *r*, and the degree f_1, \dots, f_r . See, e.g., J. Kollár, *Sharp effective Nullstellensatz*, JAMS 1 (1988), 963-765; and Z. Jelonek, *On the effective Nullstellensatz*, Inv. Math. 162 (2005), 1–17.

5. There is a natural identification (of sets) $\mathbb{A}^1 \times \mathbb{A}^1 \to \mathbb{A}^2$. Show that the Zariski topology on \mathbb{A}^2 is strictly finer than the product topology of the Zariski topologies on $\mathbb{A}^1 \times \mathbb{A}^1$.

Concretely, show:

Professor Jeff Achter Colorado State University Math 672: Projective Geometry Fall 2016 (a) Suppose C_1, \dots, C_r and D_1, \dots, D_r are closed subsets of \mathbb{A}^1 . Then

$$\cup_{i=1}^{r} C_i \times D_i \subset \mathbb{A}^2 \tag{1}$$

is closed.

(b) Find a set $S \subset \mathbb{A}^2$ which is closed but is *not* of the form (1).

Professor Jeff Achter Colorado State University Math 672: Projective Geometry Fall 2016