Homework 2

Due: Friday, September 2

Material for problems 3, 4 and 5 will be covered in class the week of August 29.

1. Let $\phi: R \rightarrow S$ be a ring homomorphism, and let $J \subset S$ be an ideal. Let $I=\phi^{-1}(J)$.
(a) Show that I is an ideal of R.
(b) Show that if J is prime, then I is prime.
(c) Give an example to show that even if J is maximal, I need not be maximal.
2. Suppose that $R=k\left[x_{1}, \cdots, x_{m}\right] / \mathfrak{a}$ and $S=k\left[y_{1}, \cdots, y_{n}\right] / \mathfrak{b}$, where k is algebraically closed. Let $\phi: R \rightarrow S$ be a ring homomorphism. Show that if $J \subset S$ is maximal, then $\phi^{-1}(J)$ is maximal.
3. Let k be an algebraically closed field, and suppose $f_{1}, \cdots, f_{r} \in k\left[x_{1}, \cdots, x_{n}\right]$. Show that there is no common solution $f_{1}=f_{2}=\cdots=f_{r}=0$ if and only if there are $a_{1}, \cdots, a_{r} \in$ $k\left[x_{1}, \cdots, x_{n}\right]$ such that

$$
\sum_{i=1}^{r} a_{i} f_{i}=1
$$

4. (a) Find polynomials

$$
a(x)=\sum_{j=0}^{4} a_{i} x^{i} \text { and } b(x)=\sum_{j=0}^{4} b_{i} x^{i}
$$

such that

$$
a(x) \cdot\left(x^{2}+1\right)+b(x) \cdot\left(x^{3}+1\right)=1 .
$$

(HINT: Solve for a_{i} and b_{i}.)
(b) Suppose $f_{1}, \cdots, f_{r} \in k\left[x_{1}, \cdots, x_{n}\right]$ have no common zero. Suppose you know there is an N such that there are polynomials $g_{1}, \cdots, g_{r} \in k\left[x_{1}, \cdots, x_{n}\right]$ such that $\operatorname{deg} f_{i} g_{i} \leq N$ and

$$
\sum f_{i} g_{i}=1
$$

Explain (briefly) how you would use linear algebra to find such polynomials.
An effective nullstellensatz gives a computable value of N in terms of n, r, and the degree f_{1}, \cdots, f_{r}. See, e.g., J. Kollár, Sharp effective Nullstellensatz, JAMS 1 (1988), 963-765; and Z. Jelonek, On the effective Nullstellensatz, Inv. Math. 162 (2005), 1-17.
5. There is a natural identification (of sets) $\mathbb{A}^{1} \times \mathbb{A}^{1} \rightarrow \mathbb{A}^{2}$. Show that the Zariski topology on \mathbb{A}^{2} is strictly finer than the product topology of the Zariski topologies on $\mathbb{A}^{1} \times \mathbb{A}^{1}$.
Concretely, show:
(a) Suppose C_{1}, \cdots, C_{r} and D_{1}, \cdots, D_{r} are closed subsets of \mathbb{A}^{1}. Then

$$
\begin{equation*}
\cup_{i=1}^{r} C_{i} \times D_{i} \subset \mathbb{A}^{2} \tag{1}
\end{equation*}
$$

is closed.
(b) Find a set $S \subset \mathbb{A}^{2}$ which is closed but is not of the form (1).

