Homework 12 Due: Friday, November 11

1. Finiteness, revisited.

A weak version of the Cohen-Seidenberg going-up theorem says:

Theorem Let $B \subseteq A$ be rings, A integral over B, and let \mathfrak{q} be a prime ideal of B. Then there exists a prime ideal \mathfrak{p} of A such that $\mathfrak{p} \cap B = \mathfrak{q}$.

Use this to show that a finite dominant map between irreducible quasiprojective varieties is surjective.

- 2. We have implicitly been using something like this in class.
 - (a) Suppose $g(z) \in k[z]$ is a polynomial. Show (directly) that $(z \alpha)$ is a multiple root of g(z) if and only if $(z \alpha)|g(z)$ and $(z \alpha)|g'(z)$. Show that g(z) has repeated roots if and only if $gcd(g(z), g'(z)) \neq 1$.
 - (b) Suppose *Y* is a normal affine variety, and that *X* is a normal variety equipped with a finite map $\phi : X \to Y$ such that $k[X] \cong k[Y]/(f(z))$, where $f(z) = z^d + \sum_{i=0}^{d-1} a_i z^i$ with $a_i \in k[Y]$.

Suppose $Q \in Y$, and let $f_Q(z) = z^d + \sum_i a_i(Q)z^i \in k[z]$. Show that $\#\phi^{-1}(Q) = d$ if and only if $gcd(f_Q(z), f'_Q(z)) = 1$. This is equivalent to the condition ϕ is smooth on $\phi^{-1}(Q)$.

We will make extensive use of the dual space in our proof(s) of Bézout's theorem.

3. The *dual space* of \mathbb{P}^2 is \mathbb{P}^{2*} , the space of lines in \mathbb{P}^2 . In fact, \mathbb{P}^{2*} is isomorphic to \mathbb{P}^2 ; a point $[a_0, a_1, a_2] \in \mathbb{P}^{2*}$ corresponds $\mathcal{Z}_{\mathbb{P}}(a_0X_0 + a_1X_1 + a_2X_2)$. (Note that is well-defined on equivalence classes!)

Let $F \in k[X_0, X_1, X_2]$ be an irreducible homogeneous form, and let $X = \mathcal{Z}(F)$ be the associated plane curve, with smooth locus X^{sm} .

Show that the map

$$X^{\mathrm{sm}} \xrightarrow{\phi} \mathbb{P}^{2*}$$
$$P \longmapsto T_{\mathrm{p}}X$$

(where $T_P X$ is the closure of the *external* tangent space to X at *P*) is a morphism, by giving an explicit formula for ϕ in terms of *F* and the coordinates on \mathbb{P}^2 .

Professor Jeff Achter Colorado State University Math 672: Projective Geometry Fall 2016 *The closure of the image is called the dual curve* X^{*}*.*

- 4. Continue to assume $X = \mathcal{Z}(F) \subset \mathbb{P}^2$.
 - (a) Show that the set of $L \in \mathbb{P}^{2*}$ which pass through a singular point of X is a proper, closed subset of \mathbb{P}^{2*} .
 - (b) Show that the set of $L \in \mathbb{P}^{2*}$ which are tangent to *X* is a proper, closed subset of \mathbb{P}^{2*} .
 - (c) Suppose deg F = d. Show that there is an open subset $U \subset \mathbb{P}^{2*}$ such that for each $L \in U, L \cap X$ consists of exactly d points.