Homework 12

Due: Friday, November 11

1. Finiteness, revisited.

A weak version of the Cohen-Seidenberg going-up theorem says:

Theorem Let $B \subseteq A$ be rings, A integral over B, and let \mathfrak{q} be a prime ideal of B. Then there exists a prime ideal \mathfrak{p} of A such that $\mathfrak{p} \cap B=\mathfrak{q}$.
Use this to show that a finite dominant map between irreducible quasiprojective varieties is surjective.
2. We have implicitly been using something like this in class.
(a) Suppose $g(z) \in k[z]$ is a polynomial. Show (directly) that $(z-\alpha)$ is a multiple root of $g(z)$ if and only if $(z-\alpha) \mid g(z)$ and $(z-\alpha) \mid g^{\prime}(z)$. Show that $g(z)$ has repeated roots if and only if $\operatorname{gcd}\left(g(z), g^{\prime}(z)\right) \neq 1$.
(b) Suppose Y is a normal affine variety, and that X is a normal variety equipped with a finite $\operatorname{map} \phi: X \rightarrow Y$ such that $k[X] \cong k[Y] /(f(z))$, where $f(z)=z^{d}+\sum_{i=0}^{d-1} a_{i} z^{i}$ with $a_{i} \in k[Y]$.
Suppose $Q \in Y$, and let $f_{Q}(z)=z^{d}+\sum_{i} a_{i}(Q) z^{i} \in k[z]$. Show that $\# \phi^{-1}(Q)=d$ if and only if $\operatorname{gcd}\left(f_{Q}(z), f_{Q}^{\prime}(z)\right)=1$. This is equivalent to the condition ϕ is smooth on $\phi^{-1}(Q)$.

We will make extensive use of the dual space in our proof(s) of Bézout's theorem.
3. The dual space of \mathbb{P}^{2} is $\mathbb{P}^{2 *}$, the space of lines in \mathbb{P}^{2}. In fact, $\mathbb{P}^{2 *}$ is isomorphic to $\mathbb{P}^{2} ;$ a point $\left[a_{0}, a_{1}, a_{2}\right] \in \mathbb{P}^{2 *}$ corresponds $\mathcal{Z}_{\mathbb{P}}\left(a_{0} X_{0}+a_{1} X_{1}+a_{2} X_{2}\right)$. (Note that is well-defined on equivalence classes!)
Let $F \in k\left[X_{0}, X_{1}, X_{2}\right]$ be an irreducible homogeneous form, and let $X=\mathcal{Z}(F)$ be the associated plane curve, with smooth locus $X^{\text {sm }}$.
Show that the map

$$
\begin{gathered}
X^{\mathrm{sm}} \xrightarrow{\phi} \mathbb{P}^{2 *} \\
P \longmapsto T_{P} X
\end{gathered}
$$

(where $T_{P} X$ is the closure of the external tangent space to X at P) is a morphism, by giving an explicit formula for ϕ in terms of F and the coordinates on \mathbb{P}^{2}.

The closure of the image is called the dual curve X*.
4. Continue to assume $X=\mathcal{Z}(F) \subset \mathbb{P}^{2}$.
(a) Show that the set of $L \in \mathbb{P}^{2 *}$ which pass through a singular point of X is a proper, closed subset of $\mathbb{P}^{2 *}$.
(b) Show that the set of $L \in \mathbb{P}^{2 *}$ which are tangent to X is a proper, closed subset of $\mathbb{P}^{2 *}$.
(c) Suppose $\operatorname{deg} F=d$. Show that there is an open subset $U \subset \mathbb{P}^{2 *}$ such that for each $L \in U, L \cap X$ consists of exactly d points.

