Homework 10 Due: Friday, October 28

1. Please prove directly this special case of a theorem from class. Let $X \subset \mathbb{A}^n$ be an affine variety, and let $P \in X$ be a point. Recall that X is singular at P if dim $T_PX > \dim(X)$, and is smooth or nonsingular at P if dim $T_PX = \dim(X)$.

Suppose $X = \mathcal{Z}(f)$ is an irreducible hypersurface.

- (a) Suppose $P \in X$. Show that X is singular at P if and only if $(\frac{\partial}{\partial x_i}f)(P) = 0$ for each $i = 1, \dots, n$.
- (b) Show that the set of smooth points of *X* is a non-empty open subset.
- 2. Let $f(x,y) \in k[x,y]$ be a non-constant polynomial, and let $X = \mathcal{Z}(f)$. If $P = (a,b) \in \mathbb{A}^2$, expand f in a Taylor series centered at P:

$$f = f(P) + \left(\frac{\partial}{\partial x}f(P)(x-a) + \frac{\partial}{\partial y}f(P)(y-b)\right) + \frac{1}{2}\left(\frac{\partial^2}{\partial x^2}f(P)(x-a)^2 + 2\frac{\partial^2}{\partial x\partial y}f(P)(x-a)(y-b) + \frac{\partial^2}{\partial y^2}f(P)(y-b)^2\right) + \cdots$$
$$= \sum f_i$$

where $f_i \in k[x,y]$ is homogeneous of degree i (in the grading which gives degree one to (x-a) and (y-b)).

The multiplicity of *X* at *P*, $\mu_P(X)$, is the smallest *r* such that $f_r \neq 0$.

- (a) Show that $P \in X \iff \mu_P(X) \ge 1$.
- (b) Show that *X* is singular at $P \iff \mu_P(X) \ge 2$.
- 3. Let $f = y^4 2y^3 + y^2 3x^2y + 2x^4$, and let $X = \mathcal{Z}(f) \subset \mathbb{A}^2$.
 - (a) Find all singular points of X.
 - (b) For each singular point P, compute $\mu_P(X)$.
- 4. As in #2, let $f(x,y) \in k[x,y]$ be nonconstant, $P \in \mathcal{Z}(f)$, $f = \sum f_i$ in coordinates centered at P.

The *initial term*, or leading term, of f at P, $In_P(f)$, is the nonzero term f_i of smallest degree. The *tangent cone* of X at P is $\mathcal{Z}(In_P(f))$.

For each of the following planar curves C, compute the tangent cone of C at P = (0,0). Graph the real points of this tangent cone.

(b)
$$\beta(x,y) = y^2 - x^3 - x^2$$

(c)
$$\gamma(x,y) = y^2 - x^3$$

(d)
$$\delta(x,y) = (x^2 + y^2)^2 + 3x^2y - y^3$$

5. You may have already done this in the service of HW 5#1.

Suppose $F \in k[x, y]$ is homogeneous of degree $d \ge 1$. Show that there is a factorization

$$F(x,y) = x^{e_0} \prod_{j=1}^{r} (y - a_i x)^{e_i}$$

where $a_i \neq a_j$ for $i \neq j$.

If $F = \text{In}_{(0,0)}(f)$, then $\deg F$ is the multiplicity of $\mathcal{Z}(f)$ at the origin, and e_i is the multiplicity of $\mathcal{Z}(f)$ along the line $\mathcal{Z}(y - a_i x)$.