Homework 9 Due: Wednesday, November 5

- 1. The ring of *dual numbers* is $k[\epsilon] = k[t]/(t^2)$, where ϵ is the coset $t + (t^2)$. Note that as a vector space, $k[\epsilon] = \{a_0 + a_1\epsilon : a_0, a_1 \in k\}$. *Make sure you understand how multiplication works in this ring.*
 - (a) Let *R* be a *k*-algebra. Suppose $\alpha : R \to k[\epsilon]$ is a ring homomorphism; write it as

$$R \xrightarrow{f} k[\epsilon]$$
$$f \longmapsto \alpha_0(f) + \epsilon \alpha_1(f)$$

Define a map of *k*-modules

$$R \xrightarrow{D_{\alpha}} \epsilon k[\epsilon]$$
$$f \longmapsto \alpha(f) - \alpha_0(f)$$
$$= \epsilon \alpha_1(f)$$

Show that D_{α} is a *k*-linear derivation. By composing this with the isomorphism of *k*-modules

$$\epsilon k[\epsilon] \longrightarrow k$$
$$\epsilon a_1 \longmapsto a_1$$

we may view D_{α} as an element of $\text{Der}_k(R, k)$.

- (b) Conversely, given $D \in \text{Der}_k(R,k)$, explain how to find $\alpha \in \text{Hom}(R,k[\epsilon])$ such that $D = D_{\alpha}$.
- (c) Suppose X is an affine variety, and $\alpha \in \text{Hom}(k[X], k[\epsilon])$. Show that there is a point $P \in X$ such that D_{α} is a derivation centered at *P*. (HINT: *Compose with the map* $k[\epsilon] \rightarrow k$, $a_0 + a_1\epsilon \mapsto a_0$.) One can use this to produce an isomorphism between T_PX and a certain subgroup of $\text{Hom}(k[X], k[\epsilon])$.
- 2. Fix $n \in \mathbb{N}$. Recall that if *R* is any ring, then $GL_n(R)$ is the subset of those elements of $Mat_n(R)$ which admit multiplicative inverses.

Consider $Mat_n(k[\epsilon])$; note that any $M \in Mat_n(k[\epsilon])$ can be written as $M_0 + \epsilon M_1$, where $M_0, M_1 \in Mat_n(k)$. Let I_n be the identity matrix.

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2008 (a) Suppose $A, B \in Mat_n(k[\epsilon])$. Show that

$$(I_n + \epsilon A)(I_n + \epsilon B) = I_n + \epsilon (A + B).$$

- (b) Show that for any $A \in Mat_n(k)$, $I_n + \epsilon A \in GL_n(k[\epsilon])$. (HINT: Use (a).)
- (c) Describe those $A \in Mat_2(k)$ for which $I_2 + \epsilon A \in SL_2(k[\epsilon])$.

In general, this gives a way of calculating the Lie algebra of an algebraic group, i.e., the tangent space at the identity of that group.

3. Prove that a polynomial $f \in k[T]$ is a local parameter at the point $T = \alpha$ if and only if α is a simple root of f.

The next two questions don't use anything recent, but taken together give an independent proof of a special case of something we'll do in class.

- 4. Suppose $X \subset \mathbb{P}^n$ is a projective irreducible variety. Let *H* be homogeneous of degree *d*, and let *Y* be the hypersurface $Y = \mathcal{Z}_{\mathbb{P}}(H)$.
 - (a) Suppose $X \cap Y = \emptyset$. Let *F* be any homogeneous form of degree *d*. Show that the function on *X* given by $P \mapsto F(P)/H(P)$ is constant.
 - (b) Continue to suppose $X \cap Y = \emptyset$. Show that for any homogeneous polynomials *F* and *G* of degree *d*, where $G \notin \mathcal{I}_{\mathbb{P}}(X)$, the rational function on $X P \mapsto F(P)/G(P)$ is constant.
- 5. Suppose $X \subset \mathbb{P}^n$ is a projective variety of positive dimension. Let $Y \subset \mathbb{P}^n$ be a hypersurface. Show that $X \cap Y$ is nonempty.

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2008