Homework 9

Due: Wednesday, November 5

1. The ring of dual numbers is $k[\epsilon]=k[t] /\left(t^{2}\right)$, where ϵ is the $\operatorname{coset} t+\left(t^{2}\right)$. Note that as a vector space, $k[\epsilon]=\left\{a_{0}+a_{1} \epsilon: a_{0}, a_{1} \in k\right\}$. Make sure you understand how multiplication works in this ring.
(a) Let R be a k-algebra. Suppose $\alpha: R \rightarrow k[\epsilon]$ is a ring homomorphism; write it as

$$
\begin{aligned}
& R \xrightarrow{f} k[\epsilon] \\
& f \longmapsto \alpha_{0}(f)+\epsilon \alpha_{1}(f)
\end{aligned}
$$

Define a map of k-modules

$$
\begin{aligned}
& R \xrightarrow{D_{\alpha}} \epsilon k[\epsilon] \\
& f \longmapsto \alpha(f)-\alpha_{0}(f) \\
& \quad=\epsilon \alpha_{1}(f)
\end{aligned}
$$

Show that D_{α} is a k-linear derivation.
By composing this with the isomorphism of k-modules

$$
\begin{aligned}
\epsilon k[\epsilon] & \\
\epsilon a_{1} \longmapsto & \longmapsto a_{1}
\end{aligned}
$$

we may view D_{α} as an element of $\operatorname{Der}_{k}(R, k)$.
(b) Conversely, given $D \in \operatorname{Der}_{k}(R, k)$, explain how to find $\alpha \in \operatorname{Hom}(R, k[\epsilon])$ such that $D=D_{\alpha}$.
(c) Suppose X is an affine variety, and $\alpha \in \operatorname{Hom}(k[X], k[\epsilon])$. Show that there is a point $P \in X$ such that D_{α} is a derivation centered at P. (HINT: Compose with the map $k[\epsilon] \rightarrow k$, $a_{0}+a_{1} \epsilon \mapsto a_{0}$.)
One can use this to produce an isomorphism between $T_{P} X$ and a certain subgroup of $\operatorname{Hom}(k[X], k[\epsilon])$.
2. Fix $n \in \mathbb{N}$. Recall that if R is any ring, then $\mathrm{GL}_{n}(R)$ is the subset of those elements of $\operatorname{Mat}_{n}(R)$ which admit multiplicative inverses.
Consider $\operatorname{Mat}_{n}(k[\epsilon])$; note that any $M \in \operatorname{Mat}_{n}(k[\epsilon])$ can be written as $M_{0}+\epsilon M_{1}$, where $M_{0}, M_{1} \in \operatorname{Mat}_{n}(k)$. Let I_{n} be the identity matrix.
(a) Suppose $A, B \in \operatorname{Mat}_{n}(k[\epsilon])$. Show that

$$
\left(I_{n}+\epsilon A\right)\left(I_{n}+\epsilon B\right)=I_{n}+\epsilon(A+B) .
$$

(b) Show that for any $A \in \operatorname{Mat}_{n}(k), I_{n}+\epsilon A \in \mathrm{GL}_{n}(k[\epsilon])$. (Hint: Use (a).)
(c) Describe those $A \in \operatorname{Mat}_{2}(k)$ for which $I_{2}+\epsilon A \in \mathrm{SL}_{2}(k[\epsilon])$.

In general, this gives a way of calculating the Lie algebra of an algebraic group, i.e., the tangent space at the identity of that group.
3. Prove that a polynomial $f \in k[T]$ is a local parameter at the point $T=\alpha$ if and only if α is a simple root of f.
The next two questions don't use anything recent, but taken together give an independent proof of a special case of something we'll do in class.
4. Suppose $X \subset \mathbb{P}^{n}$ is a projective irreducible variety. Let H be homogeneous of degree d, and let Y be the hypersurface $Y=\mathcal{Z}_{\mathbb{P}}(H)$.
(a) Suppose $X \cap Y=\emptyset$. Let F be any homogeneous form of degree d. Show that the function on X given by $P \mapsto F(P) / H(P)$ is constant.
(b) Continue to suppose $X \cap Y=\emptyset$. Show that for any homogeneous polynomials F and G of degree d, where $G \notin \mathcal{I}_{\mathbb{P}}(X)$, the rational function on $X P \mapsto F(P) / G(P)$ is constant.
5. Suppose $X \subset \mathbb{P}^{n}$ is a projective variety of positive dimension. Let $Y \subset \mathbb{P}^{n}$ be a hypersurface. Show that $X \cap Y$ is nonempty.

