Homework 6

Due: Oct 15

These first two should probably have been assigned earlier.

1. If X is a topological space, the topological dimension of $X, \operatorname{tdim}(X)$, is the supremum of the lengths of all chains

$$
Z_{0} \subsetneq Z_{1} \subsetneq \cdots \subsetneq Z_{n},
$$

where each Z_{i} is a closed, irreducible subset of X.
If R is a ring, the height of a prime ideal $\mathfrak{p} \subset R$ is the supremum of the lengths of all chains

$$
\mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \cdots \mathfrak{p}_{n}=\mathfrak{p}
$$

of distinct prime ideals. The Krull dimension of $R, \operatorname{kdim} R$, is the supremum of the heights of all prime ideals.
Let Y be an irreducible affine variety.
(a) Prove that $\operatorname{tdim}(Y)=\operatorname{kdim}(k[Y])$.
(b) Use the following result from commutative algebra to show that $\operatorname{tdim}(Y)=\operatorname{dim}(Y)$.

Theorem Let R be an integral domain which is finitely generated as a k-algebra. Then $\operatorname{kdim} R=\operatorname{tr} . \operatorname{deg} .(\operatorname{Frac}(R) / k)$.
2. Let V and W be k-vector spaces of dimensions m and n, respectively. After choosing a basis on V and W, we may identify $\mathbb{A}^{m n}$ with (the set of $m \times n$ matrices with entries in k, and thus with) $\operatorname{LinMap}(V, W)$.
(a) Suppose $\operatorname{dim} V=\operatorname{dim} W$. Prove that the set of elements of $\operatorname{LinMap}(V, W)$ which are actually isomorphisms is a Zariski open subset of $\operatorname{LinMap}(V, W)$.
(b) Let r be a nonnegative integer. Show that the set

$$
M_{r}:=\{\alpha \in \operatorname{LinMap}(V, W): \operatorname{dim}(\alpha(V)) \leq r\}
$$

is a Zariski closed subset of $\operatorname{LinMap}(V, W)$. (Here, dim means dimension as vector space.)
3. A ring variety is a variety X equipped with
addition A morphism $\alpha: X \times X \rightarrow X$;
multiplication A morphism $\mu: X \times X \rightarrow X$;
additive inverse A morphism $\iota: X \rightarrow X$;
additive identity An element $\zeta \in X$
such that (X, α, ζ) is a group variety, and multiplication satisfies the obvious axioms.
Suppose that X is a projective irreducible ring variety. Prove that the multiplication map must be trivial.
You may, and should, use basic properties of rings.
4. Elimination theory, revisited Suppose $Z=\mathcal{Z}_{\mathbb{P}^{m} \times \mathbb{A}^{n}}(I)$, where $I \subset k\left[X_{0}, \cdots, X_{m}, y_{1}, \cdots, y_{n}\right]$ is homogeneous in the $X_{i}{ }^{\prime}$ s.

The projective elimination ideal is

$$
\hat{I}=\left\{h \in k\left[y_{1}, \cdots, y_{n}\right]: \exists d>0:\left(X_{0}, \cdots, X_{n}\right)^{d} h \subset I\right\}
$$

Suppose $\left[a_{0}, \cdots, a_{m}\right] \times\left(b_{1}, \cdots, b_{m}\right) \in Z$ and $h \in \hat{I}$. Show that $h\left(b_{1}, \cdots, b_{m}\right)=0$.
This shows $p_{2}(Z) \subseteq \mathcal{Z}_{\mathbb{A}^{n}}(\hat{I})$. In fact, one can show that $p_{2}(Z)=\mathcal{Z}_{\mathbb{A}^{n}}(\hat{I})$, which provides a proof that the map $p_{2}: \mathbb{P}^{m} \times \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$ is closed.
5. Consider the morphism

$$
\begin{aligned}
& \mathbb{P}^{1} \xrightarrow{\phi} \mathbb{P}^{2} \\
& {[a, b] \longmapsto\left[a^{3}, a^{2} b+a b^{2}, b^{3}\right]}
\end{aligned}
$$

This induces a map of homogeneous coordinate rings

$$
\begin{gathered}
k_{h}\left[\mathbb{P}^{2}\right] \longrightarrow k_{h}\left[\mathbb{P}^{1}\right] \\
X \longmapsto S^{3} \\
Y \longmapsto S^{2} T+S T^{2} \\
Z \longmapsto T^{3}
\end{gathered}
$$

(a) Describe the bihomogeneous ideal $I \subset k[S, T, X, Y, Z]$ such that $\mathcal{Z}(I)=\Gamma_{\phi}$, the graph of ϕ.
(b) Explain, in the notation of the previous problem, how to compute $\mathcal{I}_{\mathbb{P}^{2}}\left(\phi\left(\mathbb{P}^{1}\right)\right)$, the ideal which defines the image of ϕ.

Extra: Using a computer algebra package if you like, compute $\mathcal{I}_{\mathbb{P}^{2}}\left(\phi\left(\mathbb{P}^{1}\right)\right)$.

