Homework 5 Due: Wednesday, October 1 October 8

- 1. Prove that a rational map $\phi : \mathbb{P}^1 \dashrightarrow \mathbb{P}^n$ is actually regular.
- 2. (a) Let ϕ be the rational function on \mathbb{P}^2 given by $\phi = X_1/X_0$. What is dom(ϕ)?
 - (b) Now, think of this function as a rational map from \mathbb{P}^2 . Compose this with the inclusion $\mathbb{A}^1 \hookrightarrow \mathbb{P}^1$, $t \mapsto [t, 1]$, to get a rational map $\overline{\phi} : \mathbb{P}^2 \dashrightarrow \mathbb{P}^1$. What is dom $(\overline{\phi})$?
- 3. Cremona transformations Consider the rational map

$$\mathbb{P}^2 \xrightarrow{\phi} \mathbb{P}^2$$

$$[a_0, a_1, a_2] \longmapsto [a_1a_2, a_0a_2, a_0a_1]$$

- (a) What is dom(ϕ)?
- (b) Show that ϕ is birational, and is its own inverse.
- (c) Find open subsets $U, V \subset \mathbb{P}^2$ such that $\phi|_U : U \to V$ is an isomorphism.
- 4. *Veronese embeddings* Fix natural numbers *m* and *d*. The set of all homogeneous polynomials of degree *d* in the variables X_0, \dots, X_m is a vector space over *k* of dimension $\binom{m+d}{d}$. Let

$$E := \{ \underline{e} = (e_0, \cdots, e_m) : \text{ each } e_i \in \mathbb{Z}_{\geq 0} \text{ and } \sum e_i = d \}$$
$$\underline{f_e} := \underline{X}_0^{\underline{e}_0} \cdots \underline{X}_m^{\underline{e}_m}$$

Then $\{f_{\underline{e}} : e \in E\}$ is a basis for the space of homogeneous polynomials of degree *d*. Let $N = \binom{m+d}{d} - 1$, and let $\{Z_{\underline{e}} : e \in E\}$ be coordinates on \mathbb{P}^N . Consider the rational map

$$\mathbb{P}^m$$
 ---- \mathbb{P}^N

 $[a_0, \cdots, a_n] \longmapsto [\cdots, f_e(a_0, \cdots, a_n), \cdots]$

- (a) Show that ν is actually a morphism $\mathbb{P}^m \to \mathbb{P}^N$.
- (b) Show that v is an inclusion.
- 5. Continuation of 4 Let I be the ideal generated by the quadrics

$$\{Z_{\underline{e}^{(1)}}Z_{\underline{e}^{(2)}} - Z_{\underline{e}^{(3)}}Z_{\underline{e}^{(4)}} : \underline{e}^{(i)} \in E, \underline{e}^{(1)} + \underline{e}^{(2)} = \underline{e}^{(3)} + \underline{e}^{(4)} \in \mathbb{Z}^{m+1}\}$$

Show that $\nu(\mathbb{P}^m) = \mathcal{Z}_{\mathbb{P}}(I)$, and that the inverse of ν is a morphism from $\mathcal{Z}_{\mathbb{P}}(I)$ to $\nu(\mathbb{P}^m)$.

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2008