Homework 4
Due: Wednesday, September 24

1. Let S be a graded ring, and let I and J be homogeneous ideals in S. Prove that each of the following is a homogeneous ideal .
(a) $I+J$.
(b) $I \cap J$.
(c) $I J$.
(d) \sqrt{I}.

You may, of course, assume that each of these is actually an ideal...
2. Let S be a graded ring, and let $I \subset S$ be a homogeneous ideal. Prove that I is prime if and only if for every pair of homogeneous $f, g \in S$ with $f g \in I$, one of f and g is in I. (Hint: Write $f=\sum_{d=m}^{M} f_{d}, g=\sum_{e=n}^{N} g_{e}$, and consider the homogeneous pieces of the product $f g$.)
3. Let $F=X_{0}^{2}+X_{1}^{2}-X_{2}^{2}$, and let $C=\mathcal{Z}_{\mathbb{P}}(F)$. Describe $C \cap U_{i}$ and $C \cap H_{i}$ for each coordinate $i=0,1,2$.

Turn the page for a proof of Chow's theorem.
4. This problem is only valid over \mathbb{C}, and compares analytic objects to algebraic objects. Let π be the natural projection

$$
\mathbb{C}^{n+1}-\{0\} \xrightarrow{\pi} \mathbb{P}_{\mathbb{C}}^{n}
$$

Say that a function f on \mathbb{C}^{n+1} is analytic in a neighborhood of the origin if there is a convergent power series

$$
\sum_{\underline{e}=e_{0}, \cdots, e_{n}: e_{j} \in \mathbb{Z}_{\geq 0}} a_{\underline{e}} X_{0}^{e_{0}} \cdots X_{n}^{e_{n}} .
$$

which agrees with f on some (analytic) neighborhood of 0 .
Suppose $X \subset \mathbb{P}_{\mathbb{C}}^{n} ;$ let $Z=\mathcal{C}(X)=\pi^{-1}(X) \cup\{0\}$ be the affine cone over X.
Suppose f is analytic in some neighborhood of the origin. Write

$$
\begin{aligned}
f(z) & =\sum_{d \geq 0} f_{d}(z) \\
f_{d}(z) & =\sum_{e: \Sigma e_{i}=d} a_{e} z_{0}^{e_{0}} \cdots z_{n}^{e_{n}} .
\end{aligned}
$$

Prove that if f vanishes on Z (in some neighborhood of the origin), then each f_{d} vanishes on Z.
If you like, you may proceed in the following way.
Define the function $g(z, t)=f(t z)$; here, $z \in \mathbb{A}_{\mathbb{C}}^{n+1}$, and $t \in \mathbb{C}$.
(a) Show $g(z, t)$ vanishes on Z for (sufficiently small) t.
(b) For a fixed value of z, consider the analytic function $g_{z}(t)=g(z, t)=f(t z)$. Show that the $s^{t h}$ derivative of $g_{z}(t)$ is

$$
\frac{d^{s}}{d t^{s}} g_{z}(t)=\sum_{d \geq s} \frac{d!}{(d-s)!} f_{d}(z) t^{d-s}
$$

(c) Show that $f_{d}(z)$ vanishes on Z. (Hint: Set $t=0$, and take a Taylor series expansion of $g_{z}(t)$ centered at $t=0$.)
5. Continuation of 4 Prove Chow's Theorem: Suppose $X \subset \mathbb{P}_{\mathbb{C}}^{n}$ is a closed analytic space, in the sense that there is a collection of functions $\left\{g_{\alpha}\right\}$ on X such that $f_{\alpha}:=g_{\alpha} \circ \pi$ is analytic on \mathbb{A}^{n+1}, and X is the vanishing locus of the g_{α} 's. Show that X is algebraic, in the sense that it is the vanishing locus of a (finite) collection of homogeneous polynomials. It suffices to show that $\mathcal{C}(X)$ is the vanishing locus of polynomials.

