Homework 3 Due: Wednesday, September 17

1. Let $H = \mathcal{Z}(x_1x_2 - 1) \subset \mathbb{A}^2$, and let \mathbb{A}^1 be the affine line with coordinate t, so that $k[\mathbb{A}^1] = k[t]$. Consider the morphism

$$H \xrightarrow{\phi} \mathbb{A}^1$$
$$(a_1, a_2) \longmapsto a_1$$

- (a) Describe the map $\phi^* : k[\mathbb{A}^1] \to k[H]$.
- (b) Is ϕ^* injective? Surjective?
- (c) Describe the image of ϕ . Is it a closed subset of \mathbb{A}^1 ?
- 2. Consider the morphism

$$\mathbb{A}^2 \xrightarrow{\beta} \mathbb{A}^2$$
$$(a_1, a_2) \longmapsto (a_1, a_1 a_2)$$

- (a) Is β injective? Explain.
- (b) Is β surjective? Explain.
- (c) Describe open subsets $U \subset \mathbb{A}^2$ and $V \subset \mathbb{A}^2$ such that β gives an isomorphism $\beta|_U : U \to V$.
- 3. (a) Let $W \subset \mathbb{A}^n$ be closed, and suppose that $U \subset W$. Show that $\mathcal{I}(U) = \mathcal{I}(W)$ if and only if *U* is dense in *W*.
 - (b) Let φ : V → W be a morphism. Show that the image of φ is dense in W if and only if φ^{*} : k[W] → k[V] is injective. Such a morphism is called dominant.
- 4. (a) Let

$$\Delta_{\mathbb{A}^n} = \{ (P, P) : P \in \mathbb{A}^n \} \subset \mathbb{A}^n \times \mathbb{A}^n \cong \mathbb{A}^{2n}.$$

Let $x_1, \dots, x_n, y_1, \dots, y_n$ be coordinates on $\mathbb{A}^n \times \mathbb{A}^n \cong \mathbb{A}^{2n}$. What is $\mathcal{I}(\Delta_{\mathbb{A}^n})$? Show that $\Delta_{\mathbb{A}^n}$ is closed.

(b) Suppose $V \subset \mathbb{A}^n$ is closed. Show that

$$\Delta_V := \{ (P, P); P \in V \} \subset \mathbb{A}^n \times \mathbb{A}^n$$

is closed. (HINT: $V \times V \subset \mathbb{A}^{2n}$ is closed.)

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2008

- 5. Let $\phi : V \to W$ be a morphism.
 - (a) The graph of ϕ is

$$\Gamma_{\phi} := \{ (P, \phi(P)) : P \in V \} \subset V \times W.$$

Show that Γ_{ϕ} is closed. (HINT: *Consider the inverse image of* Δ_W *under* $(\phi \times id_W) : V \times W \to W \times W$.)

(b) Let $\psi : V \to W$ be a morphism. Show that $\{x \in V : \phi(x) = \psi(x)\}$ is closed.

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2008