## Homework 2

Due: September 10

1. (a) Find polynomials

$$
a(x)=\sum_{j=0}^{4} a_{i} x^{i} \text { and } b(x)=\sum_{j=0}^{4} b_{i} x^{i}
$$

such that

$$
a(x) \cdot\left(x^{2}+1\right)+b(x) \cdot\left(x^{3}+1\right)=1
$$

(HINT: Solve for $a_{i}$ and $b_{i}$.)
(b) Suppose $f_{1}, \cdots, f_{r} \in k\left[x_{1}, \cdots, x_{n}\right]$ have no common zero. Suppose you know there is an $N$ such that there are polynomials $g_{1}, \cdots, g_{r} \in k\left[x_{1}, \cdots, x_{n}\right]$ such that $\operatorname{deg} f_{i} g_{i} \leq N$ and

$$
\sum f_{i} g_{i}=1
$$

Explain (briefly) how you would use linear algebra to find such polynomials.
An effective nullstellensatz gives a computable value of $N$ in terms of $n, r$, and the degree $f_{1}, \cdots, f_{r}$. See, e.g., J. Kollár, Sharp effective Nullstellensatz, JAMS 1 (1988), 963-765; and Z. Jelonek, On the effecitve Nullstellensatz, Inv. Math. 162 (2005), 1-17.
2. There is a natural identification (of sets) $\mathbb{A}^{1} \times \mathbb{A}^{1} \rightarrow \mathbb{A}^{2}$. Show that the Zariski topology on $\mathbb{A}^{2}$ is strictly finer than the product topology of the Zariski topologies on $\mathbb{A}^{1} \times \mathbb{A}^{1}$.
Concretely, show:
(a) Suppose $C_{1}, \cdots, C_{r}$ and $D_{1}, \cdots, D_{r}$ are closed subsets of $\mathbb{A}^{1}$. Then

$$
\begin{equation*}
\cup_{i=1}^{r} C_{i} \times D_{i} \subset \mathbb{A}^{2} \tag{1}
\end{equation*}
$$

is closed.
(b) Find a set $S \subset \mathbb{A}^{2}$ which is closed but is not of the form (1).
3. If $f \in k\left[x_{1}, \cdots, x_{n}\right]$, the associated distinguished ${ }^{*}$ affine open set is

$$
D(f):=\left\{P \in \mathbb{A}^{n}: f(P) \neq 0\right\} .
$$

(a) Suppose $f, g \in k\left[x_{1}, \cdots, x_{n}\right]$. Show that $D(f g)=D(f) \cap D(g)$.
(b) Show that the collection of distinguished open sets in $\mathbb{A}^{n}$ is a basis for the Zariski topology on $\mathbb{A}^{n}$.
Recall that if $X$ is a topological space, then a collection of open subsets $\mathcal{C}$ is a basis for the topology on $X$ if for every open set $U$ of $X$, and each $x \in U$, there is some $V \in \mathcal{C}$ such that

$$
x \in V \subseteq U
$$

*or principal, or standard, or basic
4. (a) A topological space $X$ is called quasicompact if every open cover admits a finite subcover.
Suppose $\mathcal{C}$ is a basis for the topology of $X$. Prove that $X$ is quasicompact if and only if every open covering $X=\cup_{\alpha} U_{\alpha}$ with $U_{\alpha} \in \mathcal{C}$ admits a finite subcover.
(b) Prove that $\mathbb{A}^{n}$ is quasicompact.

