Homework 10 Due: Friday, Nov 21

The first two problems were used in our proof of Bézout's theorem.

The *dual space* of P² is P^{2*}, the space of lines in P². In fact, P^{2*} is isomorphic to P²; a point [a₀, a₁, a₂] ∈ P^{2*} corresponds Z_P(a₀X₀ + a₁X₁ + a₂X₂). (Note that is well-defined on equivalence classes!)

Let $F \in k[X_0, X_1, X_2]$ be an irreducible homogeneous form, and let $X = \mathcal{Z}(F)$ be the associated plane curve, with smooth locus X^{sm} .

Show that the map

$$\begin{array}{ccc} X^{\mathrm{sm}} & & \phi \\ & & & & \\ P & \longmapsto & T_P X \end{array}$$

(where $T_P X$ is the closure of the *external* tangent space to X at P) is a morphism, by giving an explicit formula for ϕ in terms of F and the coordinates on \mathbb{P}^2 .

The closure of the image is called the dual curve X**.*

- 2. Continue to assume $X = \mathcal{Z}(F) \subset \mathbb{P}^2$.
 - (a) Show that the set of $L \in \mathbb{P}^{2*}$ which pass through a singular point of X is a proper, closed subset of \mathbb{P}^{2*} .
 - (b) Show that the set of $L \in \mathbb{P}^{2*}$ which are tangent to *X* is a proper, closed subset of \mathbb{P}^{2*} .
 - (c) Suppose deg F = d. Show that there is an open subset $U \subset \mathbb{P}^{2*}$ such that for each $L \in U, L \cap X$ consists of exactly d points.
- 3. Suppose $F \in k[X_0, X_1, X_2]$ is an irreducible homogeneous form of degree *d*. Give an upper bound for the number of singular points of the curve $\mathcal{Z}(F)$. (HINT: *Bézout*!)
- 4. (a) Suppose g(z) ∈ k[z] is a polynomial. Show (directly) that (z − α) is a multiple root of g(z) if and only if (z − α)|g(z) and (z − α)|g'(z). Show that g(z) has repeated roots if and only if gcd(g(z), g'(z)) ≠ 1.
 - (b) Suppose Y is a normal affine variety, and that X is a normal variety equipped with a finite map φ : X → Y such that k[X] ≅ k[Y]/(f(z)), where f(z) = z^d + ∑_{i=0}^{d-1} a_izⁱ with a_i ∈ k[Y].
 Suppose Q ∈ Y, and let f_Q(z) = z^d + ∑_i a_i(Q)zⁱ ∈ k[z]. Show that φ is smooth on φ⁻¹(Q) if and only if gcd(f_Q(z), f'_Q(z)) = 1.

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2008 5. Inside \mathbb{P}^n , consider the Fermat hypersurface of degree *d*,

$$H_{d,n} := \mathcal{Z}(X_1^d + \cdots + X_n^d - X_0^d).$$

Let $C \subset \mathbb{P}^n$ be a curve of degree *e*. Prove that $C \cap H_{d,n}$ consists of *de* points (when counted with multiplicity). Assume that *d* is invertible in *k*, and that *C* doesn't pass through the point $[1, 1, 0, 0, \dots, 0]$. If you need to place other restrictions on *C*, that's okay, too.

6. Fix some $\lambda \in k$ such that the polynomial

$$f(x,y) = xy^2 + x^2y + x + \lambda y \in k[x,y]$$

is irreducible,^{*} and let $X = \mathcal{Z}(f) \subset \mathbb{A}^2$.

Consider the map

$$\begin{array}{c} X \xrightarrow{\phi} & \mathbb{A}^1 \\ (a,b) \longmapsto & a \end{array}$$

- (a) Show that the map ϕ is surjective and quasifinite. What is its (generic) degree?
- (b) Show that ϕ is not finite. (HINT: What is the fiber $\phi^{-1}(0)$, counted with appropriate multiplicity?)
- 7. A weak version of the Cohen-Seidenberg going-up theorem says:

Theorem Let $B \subseteq A$ be rings, A integral over B, and let \mathfrak{q} be a prime ideal of B. Then there exists a prime ideal \mathfrak{p} of A such that $\mathfrak{p} \cap B = \mathfrak{q}$.

- (a) Show that a finite dominant map between irreducible quasiprojective varieties is surjective.
- (b) Give an example of a dominant quasifinite map which is not surjective.

^{*}Don't get distracted by λ ; it's just chosen so that X is irreducible. If you like, assume $k = \mathbb{C}$ and $\lambda = 2$ and proceed.