Homework 10

Due: Friday, Nov 21

The first two problems were used in our proof of Bézout's theorem.

1. The dual space of \mathbb{P}^{2} is $\mathbb{P}^{2 *}$, the space of lines in \mathbb{P}^{2}. In fact, $\mathbb{P}^{2 *}$ is isomorphic to \mathbb{P}^{2}; a point $\left[a_{0}, a_{1}, a_{2}\right] \in \mathbb{P}^{2 *}$ corresponds $\mathcal{Z}_{\mathbb{P}}\left(a_{0} X_{0}+a_{1} X_{1}+a_{2} X_{2}\right)$. (Note that is well-defined on equivalence classes!)
Let $F \in k\left[X_{0}, X_{1}, X_{2}\right]$ be an irreducible homogeneous form, and let $X=\mathcal{Z}(F)$ be the associated plane curve, with smooth locus $X^{\text {sm }}$.
Show that the map

$$
\begin{aligned}
& X^{\mathrm{sm}} \xrightarrow{\phi} \mathbb{P}^{2 *} \\
& P \longmapsto T_{P} X
\end{aligned}
$$

(where $T_{P} X$ is the closure of the external tangent space to X at P) is a morphism, by giving an explicit formula for ϕ in terms of F and the coordinates on \mathbb{P}^{2}.
The closure of the image is called the dual curve X^{*}.
2. Continue to assume $X=\mathcal{Z}(F) \subset \mathbb{P}^{2}$.
(a) Show that the set of $L \in \mathbb{P}^{2 *}$ which pass through a singular point of X is a proper, closed subset of $\mathbb{P}^{2 *}$.
(b) Show that the set of $L \in \mathbb{P}^{2 *}$ which are tangent to X is a proper, closed subset of $\mathbb{P}^{2 *}$.
(c) Suppose $\operatorname{deg} F=d$. Show that there is an open subset $U \subset \mathbb{P}^{2 *}$ such that for each $L \in U, L \cap X$ consists of exactly d points.
3. Suppose $F \in k\left[X_{0}, X_{1}, X_{2}\right]$ is an irreducible homogeneous form of degree d. Give an upper bound for the number of singular points of the curve $\mathcal{Z}(F)$. (Hint: Bézout!)
4. (a) Suppose $g(z) \in k[z]$ is a polynomial. Show (directly) that $(z-\alpha)$ is a multiple root of $g(z)$ if and only if $(z-\alpha) \mid g(z)$ and $(z-\alpha) \mid g^{\prime}(z)$. Show that $g(z)$ has repeated roots if and only if $\operatorname{gcd}\left(g(z), g^{\prime}(z)\right) \neq 1$.
(b) Suppose Y is a normal affine variety, and that X is a normal variety equipped with a finite map $\phi: X \rightarrow Y$ such that $k[X] \cong k[Y] /(f(z))$, where $f(z)=z^{d}+\sum_{i=0}^{d-1} a_{i} z^{i}$ with $a_{i} \in k[Y]$.
Suppose $Q \in Y$, and let $f_{Q}(z)=z^{d}+\sum_{i} a_{i}(Q) z^{i} \in k[z]$. Show that ϕ is smooth on $\phi^{-1}(Q)$ if and only if $\operatorname{gcd}\left(f_{Q}(z), f_{Q}^{\prime}(z)\right)=1$.
5. Inside \mathbb{P}^{n}, consider the Fermat hypersurface of degree d,

$$
H_{d, n}:=\mathcal{Z}\left(X_{1}^{d}+\cdots+X_{n}^{d}-X_{0}^{d}\right) .
$$

Let $C \subset \mathbb{P}^{n}$ be a curve of degree e. Prove that $C \cap H_{d, n}$ consists of $d e$ points (when counted with multiplicity). Assume that d is invertible in k, and that C doesn't pass through the point $[1,1,0,0, \cdots, 0]$. If you need to place other restrictions on C, that's okay, too.
6. Fix some $\lambda \in k$ such that the polynomial

$$
f(x, y)=x y^{2}+x^{2} y+x+\lambda y \in k[x, y]
$$

is irreducible,* and let $X=\mathcal{Z}(f) \subset \mathbb{A}^{2}$.
Consider the map

(a) Show that the map ϕ is surjective and quasifinite. What is its (generic) degree?
(b) Show that ϕ is not finite. (HINT: What is the fiber $\phi^{-1}(0)$, counted with appropriate multiplicity?)
7. A weak version of the Cohen-Seidenberg going-up theorem says:

Theorem Let $B \subseteq A$ be rings, A integral over B, and let \mathfrak{q} be a prime ideal of B. Then there exists a prime ideal \mathfrak{p} of A such that $\mathfrak{p} \cap B=\mathfrak{q}$.
(a) Show that a finite dominant map between irreducible quasiprojective varieties is surjective.
(b) Give an example of a dominant quasifinite map which is not surjective.

[^0]
[^0]: ${ }^{*}$ Don't get distracted by λ; it's just chosen so that X is irreducible. If you like, assume $k=\mathbb{C}$ and $\lambda=2$ and proceed.

