Homework 1
Due: Wednesday, September 3

1. Let $S \subset \mathbb{A}^{n}$ be any subset. Prove that

$$
\mathcal{I}(S):=\left\{f \in k\left[x_{1}, \cdots, x_{n}\right]: \forall P \in S, f(P)=0\right\}
$$

is an ideal of $k\left[x_{1}, \cdots, x_{n}\right]$.
2. (a) Define affine sets by

$$
\begin{aligned}
& X=\left\{\left(a_{1}, a_{2}\right): a_{2}^{2}=a_{1}^{3}-a_{1}\right\} \subset \mathbb{A}^{2} \\
& Y=\left\{\left(b_{1}, b_{2}, b_{3}\right): b_{2}^{2}+b_{1}=b_{3} b_{1} \text { and } b_{1}^{2}=b_{3}\right\} \subset \mathbb{A}^{3}
\end{aligned}
$$

Consider the map

$$
\begin{gathered}
\mathbb{A}^{2} \xrightarrow{\alpha} \mathbb{A}^{3} \\
\left(a_{1}, a_{2}\right) \longmapsto\left(a_{1}, a_{2}, a_{1}^{2}\right)
\end{gathered}
$$

Show that $\alpha(X) \subseteq Y$.
(b) Define ideals by

$$
\begin{aligned}
& I=\left(x_{2}^{2}-x_{1}^{3}+x_{1}\right) \subset k\left[x_{1}, x_{2}\right] \\
& J=\left(t_{2}^{2}+t_{1}-t_{3} t_{1}, t_{1}^{2}-t_{3}\right) \subset k\left[t_{1}, t_{2}, t_{3}\right]
\end{aligned}
$$

Consider the map

$$
\begin{array}{r}
k\left[t_{1}, t_{2}, t_{3}\right] \xrightarrow{\beta} k\left[x_{1}, x_{2}\right] \\
t_{1} \longmapsto x_{1} \\
t_{2} \longmapsto x_{2} \\
t_{3} \longmapsto x_{1}^{2}
\end{array}
$$

Show that $\beta(J) \subseteq I$.
3. Let $\phi: R \rightarrow S$ be a ring homomorphism, and let $J \subset S$ be an ideal. Let $I=\phi^{-1}(J)$.
(a) Show that I is an ideal of R.
(b) Show that if J is prime, then I is prime.
(c) Give an example to show that even if J is maximal, I need not be maximal.

Extra: Suppose that $R=k\left[x_{1}, \cdots, x_{m}\right] / \mathfrak{a}$ and $S=k\left[y_{1}, \cdots, y_{n}\right] / \mathfrak{b}$, where k is algebraically closed. Show that if $J \subset S$ is maximal, then $\phi^{-1}(J)$ is maximal.
4. Let k be an algebraically closed field, and suppose $f_{1}, \cdots, f_{r} \in k\left[x_{1}, \cdots, x_{n}\right]$. Show that there is no common solution $f_{1}=f_{2}=\cdots=0$ if and only if there are $a_{1}, \cdots, a_{r} \in k\left[x_{1}, \cdots, x_{n}\right]$ such that

$$
\sum_{i=1}^{r} a_{i} f_{i}=1 .
$$

