Homework 9

Due: Friday, October 27

1. The version of Noether's normalisation lemma we stated in class is quite geometric:

Theorem Suppose $X \subset \mathbb{P}^{n}$ is an irreducible subvariety, $\operatorname{dim} X=r$. Then there is a linear subspace $E \subset \mathbb{P}^{n}$ of dimension $n-r-1$ such that $E \cap X=\emptyset$. Fix any such E. The projection π_{E} yields a finite-to-one map

$$
X \xrightarrow{\pi_{E}} \mathbb{P}^{r}
$$

The homogeneous coordinate ring $k_{\text {homog }}[X]=k\left[X_{0}, \cdots, X_{n}\right] / I(X)$ is a finitely generated module over $k\left[Y_{0}, \cdots, Y_{r}\right]=k_{\text {homog }}[E]$.
Explain how to deduce the version usually stated in commutative algebra books:
Let R be a finitely generated algebra over an algebraically closed field k. Then there exist elements $y_{1}, \cdots, y_{r} \in R$, algebraically independent over k, such that R is finite as a $k\left[y_{1}, \cdots, y_{r}\right]$-module.
(Actually, this is true for an arbitrary, not-necessarily-algebraically-closed base field k.)
2. *If $f \in k\left[x_{1}, \cdots, x_{n}\right]$, and $P=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{A}^{n}$, the linearization of f at P is

$$
d_{P}(f)=f(P)+\sum_{i=1}^{n}\left(\frac{\partial}{\partial x_{i}} f\right)(P)\left(x_{i}-a_{i}\right) .
$$

Suppose that $I=\left(f_{1}, \cdots, f_{r}\right) \subset k\left[x_{1}, \cdots, x_{n}\right]$ and that $P \in \mathcal{Z}(I)$. Let $d_{P}(I)$ be the ideal generated by the linearizations of all elements of I :

$$
d_{P}(I)=\left(\left\{d_{P}(f): f \in I\right\}\right) k\left[x_{1}, \cdots, x_{n}\right] .
$$

Show that $d_{P}(I)=\left(d_{P}\left(f_{1}\right), \cdots, d_{P}\left(f_{r}\right)\right)$. (Hint: If $f \in I$ and $g \in k\left[x_{1}, \cdots, x_{n}\right]$, what is $d_{P}(f g)$?)
3. ${ }^{*}$ Let $X \subset \mathbb{A}^{n}$ be an affine variety, and let $P \in X$ be a point. We say X is singular at P if $\operatorname{dim} T_{P} X>\operatorname{dim}(X)$, and is smooth or nonsingular at P if $\operatorname{dim} T_{P} X=\operatorname{dim}(X)$. (We will prove that for every point $P, \operatorname{dim} T_{P} X \geq \operatorname{dim}(X)$.)
Suppose $X=\mathcal{Z}(f)$ is an irreducible hypersurface.
(a) Suppose $P \in X$. Show that X is singular at P if and only if $\left(\frac{\partial}{\partial x_{i}} f\right)(P)=0$ for each $i=1, \cdots, n$.
(b) Show that the set of smooth points of X is a non-empty open subset.
4. Let $f(x, y) \in k[x, y]$ be a non-constant polynomial, and let $X=\mathcal{Z}(f)$. If $P=(a, b) \in \mathbb{A}^{2}$, expand f in a Taylor series centered at P :

$$
\begin{aligned}
f= & f(P)+\left(\frac{\partial}{\partial x} f(P)(x-a)+\frac{\partial}{\partial y} f(P)(y-b)\right)+ \\
& \frac{1}{2}\left(\frac{\partial^{2}}{\partial x^{2}} f(P)(x-a)^{2}+2 \frac{\partial^{2}}{\partial x \partial y} f(P)(x-a)(y-b)+\frac{\partial^{2}}{\partial y^{2}} f(P)(y-b)^{2}\right)+\cdots \\
= & \sum f_{i}
\end{aligned}
$$

where $f_{i} \in k[x, y]$ is homogeneous of degree i.
The multiplicity of X at $P, \mu_{P}(X)$, is the smallest r such that $f_{r} \neq 0$.
(a) Show that $P \in X \Longleftrightarrow \mu_{P}(X) \geq 1$.
(b) Show that X is singular at $P \Longleftrightarrow \mu_{P}(X) \geq 2$.
5. Let $f=y^{4}-2 y^{3}+y^{2}-3 x^{2} y+2 x^{4}$, and let $X=\mathcal{Z}(f) \subset \mathbb{A}^{2}$.
(a) Find all singular points of X.
(b) For each singular point P, compute $\mu_{P}(X)$.

