Homework 9 Due: Friday, October 27

1. The version of Noether's normalisation lemma we stated in class is quite geometric:

Theorem Suppose $X \subset \mathbb{P}^n$ is an irreducible subvariety, dim X = r. Then there is a linear subspace $E \subset \mathbb{P}^n$ of dimension n - r - 1 such that $E \cap X = \emptyset$. Fix any such E. The projection π_E yields a finite-to-one map

$$X \xrightarrow{\pi_E} \mathbb{P}^{n}$$

The homogeneous coordinate ring $k_{\text{homog}}[X] = k[X_0, \dots, X_n]/I(X)$ is a finitely generated module over $k[Y_0, \dots, Y_r] = k_{\text{homog}}[E]$.

Explain how to deduce the version usually stated in commutative algebra books:

Let *R* be a finitely generated algebra over an algebraically closed field *k*. Then there exist elements $y_1, \dots, y_r \in R$, algebraically independent over *k*, such that *R* is finite as a $k[y_1, \dots, y_r]$ -module.

(Actually, this is true for an arbitrary, not-necessarily-algebraically-closed base field *k*.)

2. ***** If
$$f \in k[x_1, \dots, x_n]$$
, and $P = (a_1, \dots, a_n) \in \mathbb{A}^n$, the *linearization of f at P is*

$$d_P(f) = f(P) + \sum_{i=1}^n (\frac{\partial}{\partial x_i} f)(P)(x_i - a_i).$$

Suppose that $I = (f_1, \dots, f_r) \subset k[x_1, \dots, x_n]$ and that $P \in \mathcal{Z}(I)$. Let $d_P(I)$ be the ideal generated by the linearizations of all elements of *I*:

$$d_P(I) = (\{d_P(f) : f \in I\})k[x_1, \cdots, x_n].$$

Show that $d_P(I) = (d_P(f_1), \dots, d_P(f_r))$. (HINT: If $f \in I$ and $g \in k[x_1, \dots, x_n]$, what is $d_P(fg)$?)

3. Let $X \subset \mathbb{A}^n$ be an affine variety, and let $P \in X$ be a point. We say X is singular at P if dim $T_PX > \dim(X)$, and is smooth or nonsingular at P if dim $T_PX = \dim(X)$. (We will prove that for every point P, dim $T_PX \ge \dim(X)$.)

Suppose $X = \mathcal{Z}(f)$ is an irreducible hypersurface.

- (a) Suppose $P \in X$. Show that X is singular at P if and only if $(\frac{\partial}{\partial x_i}f)(P) = 0$ for each $i = 1, \dots, n$.
- (b) Show that the set of smooth points of *X* is a non-empty open subset.

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006 4. Let $f(x, y) \in k[x, y]$ be a non-constant polynomial, and let $X = \mathcal{Z}(f)$. If $P = (a, b) \in \mathbb{A}^2$, expand f in a Taylor series centered at P:

$$f = f(P) + \left(\frac{\partial}{\partial x}f(P)(x-a) + \frac{\partial}{\partial y}f(P)(y-b)\right) + \frac{1}{2}\left(\frac{\partial^2}{\partial x^2}f(P)(x-a)^2 + 2\frac{\partial^2}{\partial x\partial y}f(P)(x-a)(y-b) + \frac{\partial^2}{\partial y^2}f(P)(y-b)^2\right) + \cdots$$
$$= \sum f_i$$

where $f_i \in k[x, y]$ is homogeneous of degree *i*.

The multiplicity of *X* at *P*, $\mu_P(X)$, is the smallest *r* such that $f_r \neq 0$.

- (a) Show that $P \in X \iff \mu_P(X) \ge 1$.
- (b) Show that *X* is singular at $P \iff \mu_P(X) \ge 2$.
- 5. Let $f = y^4 2y^3 + y^2 3x^2y + 2x^4$, and let $X = \mathcal{Z}(f) \subset \mathbb{A}^2$.
 - (a) Find all singular points of *X*.
 - (b) For each singular point *P*, compute $\mu_P(X)$.

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006