Homework 8 Due: Friday, October 20

Henceforth, problems with asterisks are candidates for in-class presentations.

1. Let Z_0, \dots, Z_3 be coordinates on \mathbb{P}^3 . Consider the morphism

$$\mathbb{P}^{1} \xrightarrow{\gamma} \mathbb{P}^{3}$$
$$[a, b] \longmapsto [a^{3}, a^{2}b, ab^{2}, b^{3}]$$

and the quadrics

$$F_0 = Z_0 Z_2 - Z_1^2$$

$$F_1 = Z_0 Z_3 - Z_1 Z_2$$

$$F_2 = Z_1 Z_3 - Z_2^2$$

Let $C = \nu(\mathbb{P}^1)$.

- (a) Convince yourself that $C = \mathcal{Z}_{\mathbb{P}}(F_0, F_1, F_2)$. You need not hand this in.
- (b) Show that for each $0 \le i < j \le 2$, $\mathcal{Z}_{\mathbb{P}}(F_i, F_j) \supseteq C$. (HINT: In fact, $\mathcal{Z}_{\mathbb{P}}(F_i, F_j) = C \cup L$, where *L* is some line of the form $\mathcal{Z}(Z_q, Z_r)$.)

Note that dim $\mathcal{Z}(F_0, F_1) = \dim \mathcal{Z}(F_0, F_1, F_2)$; imposing an extra condition need not force the dimension to drop!

2. * A *ring variety* is a variety *X* equipped with

addition A morphism $\alpha : X \times X \rightarrow X$; multiplication A morphism $\mu : X \times X \rightarrow X$; additive inverse A morphism $\iota : X \rightarrow X$; additive identity An element $\zeta \in X$

such that (X, α, ζ) is a group variety, and multiplication satisfies the obvious axioms.

Suppose that *X* is a projective irreducible ring variety. Prove that the multiplication map must be trivial.

You may, and should, use basic properties of rings. This answers a question somebody asked me in *Laramie*.

3. Let $X \subset \mathbb{P}^n$ be an irreducible projective variety. Suppose there exists some $d \in \mathbb{N}$ such that for every pair of homogeneous forms $F, G \in k[X_0, \dots, X_n]$ with deg $F = \deg G = d$ and $G \notin \mathcal{I}_{\mathbb{P}}(X)$, the rational function $P \mapsto F(P)/G(P)$ is constant. Show that X is a point.

This doesn't use anything recent from class, but it helps a lot on the next problem.

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006

- 4. Suppose $X \subset \mathbb{P}^n$ is a projective irreducible variety. Let *H* be homogeneous of degree *d*, and let *Y* be the hypersurface $Y = \mathcal{Z}_{\mathbb{P}}(H)$.
 - (a) Suppose $X \cap Y = \emptyset$. Let *F* be any homogeneous form of degree *d*. Show that the function on *X* given by $P \mapsto F(P)/H(P)$ is constant.
 - (b) Continue to suppose $X \cap Y = \emptyset$. Show that for any homogeneous polynomials *F* and *G* of degree *d*, where $G \notin \mathcal{I}_{\mathbb{P}}(X)$, the rational function on $X P \mapsto F(P)/G(P)$ is constant.
 - (c) Suppose $X \subset \mathbb{P}^n$ is a projective variety of positive dimension. Let $Y \subset \mathbb{P}^n$ be a hypersurface. Show that $X \cap Y$ is nonempty.

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006