## Homework 8

Due: Friday, October 20
Henceforth, problems with asterisks are candidates for in-class presentations.

1. Let $Z_{0}, \cdots, Z_{3}$ be coordinates on $\mathbb{P}^{3}$. Consider the morphism

$$
\begin{aligned}
& \mathbb{P}^{1} \longrightarrow \mathbb{P}^{3} \\
& {[a, b] \longmapsto\left[a^{3}, a^{2} b, a b^{2}, b^{3}\right]}
\end{aligned}
$$

and the quadrics

$$
\begin{aligned}
& F_{0}=Z_{0} Z_{2}-Z_{1}^{2} \\
& F_{1}=Z_{0} Z_{3}-Z_{1} Z_{2} \\
& F_{2}=Z_{1} Z_{3}-Z_{2}^{2}
\end{aligned}
$$

Let $C=v\left(\mathbb{P}^{1}\right)$.
(a) Convince yourself that $C=\mathcal{Z}_{\mathbb{P}}\left(F_{0}, F_{1}, F_{2}\right)$. You need not hand this in.
(b) Show that for each $0 \leq i<j \leq 2, \mathcal{Z}_{\mathbb{P}}\left(F_{i}, F_{j}\right) \supsetneq C$. (Hint: In fact, $\mathcal{Z}_{\mathbb{P}}\left(F_{i}, F_{j}\right)=C \cup L$, where $L$ is some line of the form $\mathcal{Z}\left(Z_{q}, Z_{r}\right)$.)

Note that $\operatorname{dim} \mathcal{Z}\left(F_{0}, F_{1}\right)=\operatorname{dim} \mathcal{Z}\left(F_{0}, F_{1}, F_{2}\right)$; imposing an extra condition need not force the dimension to drop!
2. *A ring variety is a variety $X$ equipped with
addition A morphism $\alpha: X \times X \rightarrow X$;
multiplication A morphism $\mu: X \times X \rightarrow X$;
additive inverse A morphism $\iota: X \rightarrow X$;
additive identity An element $\zeta \in X$
such that $(X, \alpha, \zeta)$ is a group variety, and multiplication satisfies the obvious axioms.
Suppose that $X$ is a projective irreducible ring variety. Prove that the multiplication map must be trivial.

You may, and should, use basic properties of rings. This answers a question somebody asked me in Laramie.
3. Let $X \subset \mathbb{P}^{n}$ be an irreducible projective variety. Suppose there exists some $d \in \mathbb{N}$ such that for every pair of homogeneous forms $F, G \in k\left[X_{0}, \cdots, X_{n}\right]$ with $\operatorname{deg} F=\operatorname{deg} G=d$ and $G \notin \mathcal{I}_{\mathbb{P}}(X)$, the rational function $P \mapsto F(P) / G(P)$ is constant. Show that $X$ is a point.
This doesn't use anything recent from class, but it helps a lot on the next problem.
4. * Suppose $X \subset \mathbb{P}^{n}$ is a projective irreducible variety. Let $H$ be homogeneous of degree $d$, and let $Y$ be the hypersurface $Y=\mathcal{Z}_{\mathbb{P}}(H)$.
(a) Suppose $X \cap Y=\emptyset$. Let $F$ be any homogeneous form of degree $d$. Show that the function on $X$ given by $P \mapsto F(P) / H(P)$ is constant.
(b) Continue to suppose $X \cap Y=\emptyset$. Show that for any homogeneous polynomials $F$ and $G$ of degree $d$, where $G \notin \mathcal{I}_{\mathbb{P}}(X)$, the rational function on $X P \mapsto F(P) / G(P)$ is constant.
(c) Suppose $X \subset \mathbb{P}^{n}$ is a projective variety of positive dimension. Let $Y \subset \mathbb{P}^{n}$ be a hypersurface. Show that $X \cap Y$ is nonempty.

