Homework 7 Due: Monday, October 9

1. Let $P = [0, \dots, 0, 1] \in \mathbb{P}^n$. Consider the rational map

$$\mathbb{P}^n \xrightarrow{\pi_p} \mathbb{P}^{n-1}$$

$$[a_0,\cdots,a_n]\longmapsto [a_0,\cdots,a_{n-1}],$$

the projection from P.

- (a) What is dom(π_P)?
- (b) Show that π is surjective.
- (c) If $Q \in \mathbb{P}^n$, what is $\pi_p^{-1}(\pi(Q))$? Describe this set geometrically.
- 2. Let *V* and *W* be *k*-vector spaces of dimensions *m* and *n*, respectively. After choosing a basis on *V* and *W*, we may identify \mathbb{A}^{mn} with (the set of $m \times n$ matrices with entries in *k*, and thus with) LinMap(*V*, *W*).
 - (a) Suppose dim $V = \dim W$. Prove that the set of elements of LinMap(V, W) which are actually isomorphisms is a Zariski open subset of LinMap(V, W).
 - (b) Let *r* be a nonnegative integer. Show that the set

$$M_r := \{ \alpha \in \operatorname{LinMap}(V, W) : \dim(\alpha(V)) \le r \}$$

is a Zariski closed subset of LinMap(V, W). (Here, *dim* means dimension as vector space.)

- 3. Recall that dim(X) is the transcendence degree of k(X) over k.
 - (a) Suppose *X* and *Y* are irreducible quasiprojective varieties, and that there exists a dominant rational map $X \rightarrow Y$. Prove that $\dim(X) \ge \dim(Y)$.
 - (b) Let *X* be an irreducible affine variety, and let $Y \subseteq X$ be an irreducible closed subvariety. Show that $\dim(Y) \leq \dim X$.

In fact, much more is true; dim $Y = \dim X$ if and only if Y = X.

4. If *X* is a topological space, the topological dimension of *X*, tdim(*X*), is the supremum of the lengths of all chains

$$Z_0 \subsetneq Z_1 \subsetneq \cdots \subsetneq Z_n,$$

where each Z_i is a closed, irreducible subset of X.

If *R* is a ring, the height of a prime ideal $\mathfrak{p} \subset R$ is the supremum of the lengths of all chains

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \mathfrak{p}_n = \mathfrak{p}$$

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006 of distinct prime ideals. The Krull dimension of *R*, kdim *R*, is the supremum of the heights of all prime ideals.

Let *Y* be an irreducible affine variety.

- (a) Prove that tdim(Y) = kdim(k[Y]).
- (b) Use the following result from commutative algebra to show that tdim(Y) = dim(Y).

Theorem Let *R* be an integral domain which is finitely generated as a *k*-algebra. Then kdim R = tr.deg.(Frac(R)/k).

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006