Homework 5 Due: Friday, September 22

- 1. Let $F = A_0X_0 + A_1X_1 + A_2X_2$ and let $G = B_0X_0 + B_1X_1 + B_2X_2$, where at least one A_i and at least one B_j are nonzero. Consider the lines in the projective plane $L = \mathcal{Z}_{\mathbb{P}}(F) \subset \mathbb{P}^2$ and $M = \mathcal{Z}_{\mathbb{P}}(G) \subset \mathbb{P}^2$.
 - (a) Show that L = M if and only if there exists some $\lambda \in k^{\times}$ such that, for each $i, B_i = \lambda A_i$.
 - (b) Suppose $L \neq M$. Prove that the intersection $L \cap M$ consists of a unique point, *P*.
 - (c) Suppose $L \neq M$. Give a criterion for when $L \cap M \in H_0$.
- 2. A hypersurface defined by a linear polynomial is called a hyperplane.
 - (a) Suppose $Y \subset \mathbb{P}^n$ is a projective variety. Show that the following conditions are equivalent:

i. $\mathcal{I}_{\mathbb{P}}(Y)$ can be generated by a set of linear polynomials.

ii. Y can be written as an intersection of hyperplanes.

Such a variety is called a linear variety.

- (b) Consider \mathbb{A}^{n+1} as an n + 1-dimensional vector space over k. Show that the affine cone over a linear variety is a sub-vector space of \mathbb{A}^{n+1} .
- 3. Let $F = X_0^2 + X_1^2 X_2^2$, and let $C = \mathcal{Z}_{\mathbb{P}}(F)$. Describe $C \cap U_i$ and $C \cap H_i$ for each coordinate i = 0, 1, 2.
- 4. Consider the map

 $\mathbb{P}^1\times\mathbb{P}^1 \xrightarrow{\quad \phi \quad } \mathbb{P}^3$

 $(a_0:a_1) \times (b_0:b_1) \longmapsto (a_0b_0:a_0b_1:a_1b_0:a_1b_1)$

Show that the image of ϕ is an algebraic set. (HINT: *There exists a form* $F \in k[X_0, \dots, X_3]$, *homogeneous of degree two, such that* $im(\phi) = \mathcal{Z}_{\mathbb{P}}(F)$.)

5. Prove that any regular function on \mathbb{P}^n is constant. (HINT: *Mimic our proof from class for* \mathbb{P}^1 . In *fact, you can show that if f is a rational function on* \mathbb{P}^n *, and if f is regular on distinct affine patches* U_i and U_j , then f is constant.)

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006