Homework 5

Due: Friday, September 22

1. Let $F=A_{0} X_{0}+A_{1} X_{1}+A_{2} X_{2}$ and let $G=B_{0} X_{0}+B_{1} X_{1}+B_{2} X_{2}$, where at least one A_{i} and at least one B_{j} are nonzero. Consider the lines in the projective plane $L=\mathcal{Z}_{\mathbb{P}}(F) \subset \mathbb{P}^{2}$ and $M=\mathcal{Z}_{\mathbb{P}}(G) \subset \mathbb{P}^{2}$.
(a) Show that $L=M$ if and only if there exists some $\lambda \in k^{\times}$such that, for each $i, B_{i}=\lambda A_{i}$.
(b) Suppose $L \neq M$. Prove that the intersection $L \cap M$ consists of a unique point, P.
(c) Suppose $L \neq M$. Give a criterion for when $L \cap M \in H_{0}$.
2. A hypersurface defined by a linear polynomial is called a hyperplane.
(a) Suppose $Y \subset \mathbb{P}^{n}$ is a projective variety. Show that the following conditions are equivalent:
i. $\mathcal{I}_{\mathbb{P}}(Y)$ can be generated by a set of linear polynomials.
ii. Y can be written as an intersection of hyperplanes.

Such a variety is called a linear variety.
(b) Consider \mathbb{A}^{n+1} as an $n+1$-dimensional vector space over k. Show that the affine cone over a linear variety is a sub-vector space of \mathbb{A}^{n+1}.
3. Let $F=X_{0}^{2}+X_{1}^{2}-X_{2}^{2}$, and let $C=\mathcal{Z}_{\mathbb{P}}(F)$. Describe $C \cap U_{i}$ and $C \cap H_{i}$ for each coordinate $i=0,1,2$.
4. Consider the map

$$
\begin{gathered}
\mathbb{P}^{1} \times \mathbb{P}^{1} \xrightarrow{\phi} \mathbb{P}^{3} \\
\left(a_{0}: a_{1}\right) \times\left(b_{0}: b_{1}\right) \longmapsto\left(a_{0} b_{0}: a_{0} b_{1}: a_{1} b_{0}: a_{1} b_{1}\right)
\end{gathered}
$$

Show that the image of ϕ is an algebraic set. (Hint: There exists a form $F \in k\left[X_{0}, \cdots, X_{3}\right]$, homogeneous of degree two, such that $\operatorname{im}(\phi)=\mathcal{Z}_{\mathbb{P}}(F)$.)
5. Prove that any regular function on \mathbb{P}^{n} is constant. (Hint: Mimic our proof from class for \mathbb{P}^{1}. In fact, you can show that if f is a rational function on \mathbb{P}^{n}, and if f is regular on distinct affine patches U_{i} and U_{j}, then f is constant.)

