Homework 4 Due: Friday, September 15

- 1. Let *S* be a graded ring, and let *I* and *J* be homogeneous ideals in *S*.¹ Prove that each of the following is a homogeneous ideal .
 - (a) \sqrt{I} .
 - (b) I + J.
 - (c) *IJ*.
 - (d) $I \cap J$.

You may, of course, assume that each of these is actually an ideal...

- 2. Let *S* be a graded ring, and let $I \subset S$ be a homogeneous ideal. Prove that *I* is prime if and only if for every pair of *homogeneous* $f, g \in S$ with $fg \in I$, one of f and g is in *I*.
- 3. Suppose that $f, g \in k[X_0, \dots, X_n]$ are both homogeneous of degree *d*. Show that the function $P \mapsto f(P)/g(P)$ is well-defined on \mathbb{P}^n , outside the vanishing locus of *g*.

$$S = \oplus_{d \ge 0} S_d$$

such that $S_d \cdot S_e \subseteq S_{d+e}$. Elements of S_d are called homogeneous of degree d. The existence of the decomposition means that if $f \in S$, then f can be written uniquely as $f = \sum_{d \ge 0} f_d$, where $f_d \in S_d$ and $f_d = 0$ for all but finitely many d. An ideal $I \subset S$ is called homogeneous if

 $I = \oplus (I \cap S_d).$

If this is true, then $f = \sum f_d$ is in *I* if and only if each $f_d \in I$. We will show:

Lemma If *S* is a graded ring, and if $I \subset S$ is an ideal, then *I* is homogeneous if and only if it can be generated by homogeneous elements.

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006

¹In class on Wednesday, we will make the following definitions: A graded ring is a ring *S* equipped with a decomposition of abelian groups