Homework 3 Due: *Monday* September 11

- 1. Show that the image of a morphism need not be closed. (HINT: *Remember, any regular function* on *X* defines a morphism $X \to \mathbb{A}^1$.)
- 2. Let $X \subset \mathbb{A}^n$ be an irreducible variety.
 - (a) Show that the coordinate ring k[X] is an integral domain. Therefore, we may construct the field of rational functions on X, $k(X) := \operatorname{Frac} k[X]$. Any element of k(X) is represented by some p(X)/q(X), where $p, q \in k[X]$ and $q \neq 0$.
 - (b) Let $f \in k(X)$ be a rational function. If $P \in X$, f is called *regular at* P if there is a representative f = p/q where $q(P) \neq 0$. Let

 $dom(f) = \{P \in X : f \text{ is regular at } P\}.$

Prove that dom(f) is an open subset of *X*.

- 3. (a) Let $W \subset \mathbb{A}^n$ be closed, and suppose that $U \subset W$. Show that $\mathcal{I}(U) = \mathcal{I}(W)$ if and only if *U* is dense in *W*.
 - (b) Let $\phi : V \to W$ be a morphism. Show that the image of ϕ is dense in *W* if and only if $\phi^* : k[W] \to k[V]$ is injective. *Such a morphism is called* dominant.
- 4. (a) Let

$$\Delta_{\mathbb{A}^n} = \{ (P, P) : P \in \mathbb{A}^n \} \subset \mathbb{A}^n \times \mathbb{A}^n \cong \mathbb{A}^{2n}.$$

Let $x_1, \dots, x_n, y_1, \dots, y_n$ be coordinates on $\mathbb{A}^n \times \mathbb{A}^n \cong \mathbb{A}^{2n}$. What is $\mathcal{I}(\Delta_{\mathbb{A}^n})$? Show that $\Delta_{\mathbb{A}^n}$ is closed.

(b) Suppose $V \subset \mathbb{A}^n$ is closed. Show that

$$\Delta_V := \{ (P, P); P \in V \} \subset \mathbb{A}^n \times \mathbb{A}^n$$

is closed. (HINT: $V \times V \subset \mathbb{A}^{2n}$ is closed.)

- 5. Let $\phi : V \to W$ be a morphism.
 - (a) The graph of ϕ is

$$\Gamma_{\phi} := \{ (P, \phi(P)) : P \in V \} \subset V \times W.$$

Show that Γ_{ϕ} is closed. (HINT: Consider the inverse image of Δ_W under $(\phi \times id_W) : V \times W \to W \times W$.)

(b) Let $\psi : V \to W$ be a morphism. Show that $\{x \in V : \psi(x) = \psi(x)\}$ is closed.

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006