Homework 2 Due: Friday, September 1

1. Let *k* be an algebraically closed field, and suppose $f_1, \dots, f_r \in k[x_1, \dots, x_n]$. Show that there is no common solution $f_1 = f_2 = \dots = 0$ if and only if there are $a_1, \dots, a_r \in k[x_1, \dots, x_n]$ such that

$$\sum_{i=1}^r a_i f_i = 1.$$

- 2. Let ϕ : $R \to S$ be a ring homomorphism, and let $J \subset S$ be an ideal. Let $I = \phi^{-1}(J)$.
 - (a) Show that *I* is an ideal of *R*.
 - (b) Show that if *J* is prime, then *I* is prime.
 - (c) Give an example to show that even if *J* is maximal, *I* need not be maximal.

Extra credit: Suppose that $R = k[x_1, \dots, x_m]/\mathfrak{a}$ and $S = k[y_1, \dots, y_n]/\mathfrak{b}$, where k is algebraically closed. Show that if $J \subset S$ is maximal, then $\phi^{-1}(J)$ is maximal.

3. There is a natural identification (of sets) $\mathbb{A}^1 \times \mathbb{A}^1 \to \mathbb{A}^2$. Show that the Zariski topology on \mathbb{A}^2 is strictly finer than the product topology of the Zariski topologies on $\mathbb{A}^1 \times \mathbb{A}^1$.

Concretely, show:

(a) Suppose C_1, \dots, C_r and D_1, \dots, D_r are closed subsets of \mathbb{A}^1 . Then

$$\cup_{i=1}^{r} C_i \times D_i \subset \mathbb{A}^2 \tag{1}$$

is closed.

- (b) Find a set $S \subset \mathbb{A}^2$ which is closed but is *not* of the form (1).
- 4. If $f \in k[x_1, \dots, x_n]$, the associated distinguished¹ affine open set is

$$D(f) := \{ P \in \mathbb{A}^n : f(P) \neq 0 \}.$$

- (a) Suppose $f, g \in k[x_1, \dots, x_n]$. Show that $D(fg) = D(f) \cap D(g)$.
- (b) Show that the collection of distinguished open sets in Aⁿ is a basis for the Zariski topology on Aⁿ.

Recall that if X is a topological space, then a collection of open subsets C is a basis for the topology on X if for every open set U of X, and each $x \in U$, there is some $V \in C$ such that

$$x \in V \subseteq U$$
.

5. Prove that \mathbb{A}^n is compact.

¹or principal, or standard, or basic

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006