1. Let $X \subset \mathbb{P}^n$ be a collection of r distinct points. Prove directly that for $\ell \gg 0$, $h_X(\ell) = r$.

2. The dual space of \mathbb{P}^2 is \mathbb{P}^{2*}, the space of lines in \mathbb{P}^2. In fact, \mathbb{P}^{2*} is isomorphic to \mathbb{P}^2; a point $[a_0, a_1, a_2] \in \mathbb{P}^{2*}$ corresponds to $Z_P(a_0X_0 + a_1X_1 + a_2X_2)$. (Note that is well-defined on equivalence classes!)

Let $F \in k[X_0, X_1, X_2]$ be an irreducible homogeneous form, and let $X = Z(F)$ be the associated plane curve, with smooth locus X^{sm}.

Show that the map

\[X^{sm} \xrightarrow{\phi} \mathbb{P}^{2*} \]

\[P \longleftarrow T_P X \]

(where $T_P X$ is the closure of the external tangent space to X at P) is a morphism, by giving an explicit formula for ϕ in terms of F and the coordinates on \mathbb{P}^2.

The closure of the image is called the dual curve X^*.

3. *Continue to assume $X = Z(F) \subset \mathbb{P}^2$.

(a) Show that the set of $L \in \mathbb{P}^{2*}$ which pass through a singular point of X is a proper, closed subset of \mathbb{P}^{2*}.

(b) Show that the set of $L \in \mathbb{P}^{2*}$ which are tangent to X is a proper, closed subset of \mathbb{P}^{2*}.

(c) Suppose $\deg F = d$. Show that there is an open subset $U \subset \mathbb{P}^{2*}$ such that for each $L \in U$, $L \cap X$ consists of exactly d points.

4. Let $Y \subset \mathbb{P}^n$ be a closed subset of dimension r, with Hilbert polynomial P_Y. The arithmetic genus of Y is

\[p_a(Y) = (-1)^r (P_Y(0) - 1). \]

(a) Show that $p_a(\mathbb{P}^n) = 0$.

(b) Suppose Y is a curve in \mathbb{P}^2 of degree d. Show that $p_a(Y) = \frac{(d-1)(d-2)}{2}$.

(c) Suppose Y is a hypersurface of degree d in \mathbb{P}^n. What is the arithmetic genus of Y?

5. *Suppose $X \subset \mathbb{P}^n$ is closed. Show that X is linear if and only if its degree is one.