Homework 13 Due: Friday, December **8**

- 1. Let $X \subset \mathbb{P}^n$ be a collection of *r* distinct points. Prove directly that for $\ell \gg 0$, $h_X(\ell) = r$.
- 2. The *dual space* of \mathbb{P}^2 is \mathbb{P}^{2*} , the space of lines in \mathbb{P}^2 . In fact, \mathbb{P}^{2*} is isomorphic to \mathbb{P}^2 ; a point $[a_0, a_1, a_2] \in \mathbb{P}^{2*}$ corresponds $\mathcal{Z}_{\mathbb{P}}(a_0X_0 + a_1X_1 + a_2X_2)$. (Note that is well-defined on equivalence classes!)

Let $F \in k[X_0, X_1, X_2]$ be an irreducible homogeneous form, and let $X = \mathcal{Z}(F)$ be the associated plane curve, with smooth locus X^{sm} .

Show that the map

$$X^{\mathrm{sm}} \xrightarrow{\phi} \mathbb{P}^{2*}$$
$$P \longmapsto T_p X$$

(where $T_P X$ is the closure of the *external* tangent space to X at P) is a morphism, by giving an explicit formula for ϕ in terms of F and the coordinates on \mathbb{P}^2 .

The closure of the image is called the dual curve X^{*}*.*

- 3. ***** Continue to assume $X = \mathcal{Z}(F) \subset \mathbb{P}^2$.
 - (a) Show that the set of $L \in \mathbb{P}^{2*}$ which pass through a singular point of X is a proper, closed subset of \mathbb{P}^{2*} .
 - (b) Show that the set of $L \in \mathbb{P}^{2*}$ which are tangent to *X* is a proper, closed subset of \mathbb{P}^{2*} .
 - (c) Suppose deg F = d. Show that there is an open subset $U \subset \mathbb{P}^{2*}$ such that for each $L \in U, L \cap X$ consists of exactly d points.
- 4. Let $Y \subset \mathbb{P}^n$ be a closed subset of dimension r, with Hilbert polynomial P_Y . The *arithmetic genus* of Y is

$$p_a(Y) = (-1)^r (P_Y(0) - 1).$$

- (a) Show that $p_a(\mathbb{P}^n) = 0$.
- (b) Suppose Y is a curve in \mathbb{P}^2 of degree *d*. Show that $p_a(Y) = \frac{(d-1)(d-2)}{2}$.
- (c) Suppose *Y* is a hypersurface of degree *d* in \mathbb{P}^n . What is the arithmetic genus of *Y*?
- 5. * Suppose $X \subset \mathbb{P}^n$ is closed. Show that X is linear if and only if its degree is one.

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006