Homework 13

Due: Friday, December 8

1. Let $X \subset \mathbb{P}^{n}$ be a collection of r distinct points. Prove directly that for $\ell \gg 0, h_{X}(\ell)=r$.
2. The dual space of \mathbb{P}^{2} is $\mathbb{P}^{2 *}$, the space of lines in \mathbb{P}^{2}. In fact, $\mathbb{P}^{2 *}$ is isomorphic to \mathbb{P}^{2}; a point $\left[a_{0}, a_{1}, a_{2}\right] \in \mathbb{P}^{2 *}$ corresponds $\mathcal{Z}_{\mathbb{P}}\left(a_{0} X_{0}+a_{1} X_{1}+a_{2} X_{2}\right)$. (Note that is well-defined on equivalence classes!)
Let $F \in k\left[X_{0}, X_{1}, X_{2}\right]$ be an irreducible homogeneous form, and let $X=\mathcal{Z}(F)$ be the associated plane curve, with smooth locus $X^{\text {sm }}$.
Show that the map

$$
\begin{aligned}
& X^{\mathrm{sm}} \xrightarrow{\phi} \mathbb{P}^{2 *} \\
& P \longmapsto T_{P} X
\end{aligned}
$$

(where $T_{P} X$ is the closure of the external tangent space to X at P) is a morphism, by giving an explicit formula for ϕ in terms of F and the coordinates on \mathbb{P}^{2}.
The closure of the image is called the dual curve X^{*}.
3. *Continue to assume $X=\mathcal{Z}(F) \subset \mathbb{P}^{2}$.
(a) Show that the set of $L \in \mathbb{P}^{2 *}$ which pass through a singular point of X is a proper, closed subset of $\mathbb{P}^{2 *}$.
(b) Show that the set of $L \in \mathbb{P}^{2 *}$ which are tangent to X is a proper, closed subset of $\mathbb{P}^{2 *}$.
(c) Suppose $\operatorname{deg} F=d$. Show that there is an open subset $U \subset \mathbb{P}^{2 *}$ such that for each $L \in U, L \cap X$ consists of exactly d points.
4. Let $Y \subset \mathbb{P}^{n}$ be a closed subset of dimension r, with Hilbert polynomial P_{Y}. The arithmetic genus of Y is

$$
p_{a}(Y)=(-1)^{r}\left(P_{Y}(0)-1\right)
$$

(a) Show that $p_{a}\left(\mathbb{P}^{n}\right)=0$.
(b) Suppose Y is a curve in \mathbb{P}^{2} of degree d. Show that $p_{a}(Y)=\frac{(d-1)(d-2)}{2}$.
(c) Suppose Y is a hypersurface of degree d in \mathbb{P}^{n}. What is the arithmetic genus of Y ?
5. *Suppose $X \subset \mathbb{P}^{n}$ is closed. Show that X is linear if and only if its degree is one.

