Homework 12

Due: Friday, ??

1. The ring of dual numbers is $k[\epsilon]=k[t] /\left(t^{2}\right)$, where ϵ is the $\operatorname{coset} t+\left(t^{2}\right)$. Note that as a vector space, $k[\epsilon]=\left\{a_{0}+a_{1} \epsilon: a_{0}, a_{1} \in k\right\}$. Make sure you understand how multiplication works in this ring.
Let X be a variety, and let $P \in X$.
(a) Let $\alpha: \mathcal{O}_{P, X} \rightarrow k[\epsilon]$ be a ring homomorphism. Define a map $D_{\alpha}: \mathcal{O}_{P, X} \rightarrow k$ as follows: For $f \in \mathcal{O}_{P, X}$, write $\alpha(f)=a_{0}+a_{1} \epsilon$, and let $D_{\alpha}(f)=a_{1}$. Show that D_{α} is a k-linear derivation.
(b) Conversely, given $D \in \operatorname{Der}_{k}\left(\mathcal{O}_{P, X}, k\right)$, explain how to find $\alpha \in \operatorname{Hom}\left(\mathcal{O}_{P, X}, k[\epsilon]\right)$ such that $D=D_{\alpha}$.
2. Fix $n \in \mathbb{N}$, and consider $\operatorname{Mat}_{n}(k[\epsilon])$. Note that any $M \in \operatorname{Mat}_{N}(k[\epsilon])$ can be written as $M_{0}+\epsilon M_{1}$, where $M_{0}, M_{1} \in \operatorname{Mat}_{n}(k)$. Let I_{n} be the identity matrix.
(a) Suppose $A, B \in \operatorname{Mat}_{n}(k[\epsilon])$. Show that

$$
\left(I_{n}+\epsilon A\right)\left(I_{n}+\epsilon B\right)=I_{n}+\epsilon(A+B) .
$$

(b) Show that for any $A \in \operatorname{Mat}_{n}(k), I_{n}+\epsilon A \in \mathrm{GL}_{n}(k[\epsilon])$.
(c) Describe those $A \in \operatorname{Mat}_{2}(k)$ for which $I_{2}+\epsilon A \in \mathrm{SL}_{2}(k[\epsilon])$.

Extra credit: Do the last question for general n.
3. Prove that a polynomial $f \in k[T]$ is a local parameter at the point $T=\alpha$ if and only if α is a simple root of f.
The next questions are combinatorial, not algebro-geometric; but we'll be using the results later on.
4. A numerical polynomial is a polynomial $p(z) \in \mathbb{Q}[z]$ such that $p(n) \in \mathbb{Z}$ for all sufficiently large integers. For example, the binomial coefficient function

$$
\binom{z}{r}:=\frac{z(z-1) \cdots(z-r+1)}{r!}
$$

is a numerical polynomial. $\left(\operatorname{Set}\binom{z}{0}=1\right.$.)
For any function f on the integers, define its difference function to be $\Delta(f): n \mapsto f(n+1)-$ $f(n)$. You should read, but not hand in, (a), (b) and (c).
(a) The sum and difference of numerical polynomials are numerical polynomials. $\Delta(f-$ $g)=\Delta(f)-\Delta(g)$.
(b) If f is a numerical polynomial of degree $r \geq 1$, then $\Delta(f)$ is a numerical polynomial of degree $r-1$.
(c) Suppose that $p(z) \in \mathbb{Q}[z]$ (not necessarily numerical) has degree r. Show that there are unique numbers $c_{0}, \cdots, c_{r} \in \mathbb{Q}$ so that

$$
\begin{equation*}
p(z)=\sum_{j=0}^{r} c_{j}\binom{z}{j} \tag{1}
\end{equation*}
$$

We will call this the binomial representation of $p(z)$.
(d) Express $\left.\Delta\binom{z}{r}\right)$ as a binomial coefficient function.
(e) Given a binomial representation of $p(z)$ as in (1), find a binomial representation for $\Delta(p)$.
(f) Suppose $p(z)$ is a numerical polynomial, that $c_{0} \in \mathbb{Q}$ and that $p(z)-c_{0}$ is also a numerical polynomial. Then $c_{0} \in \mathbb{Z}$.
5. Suppose p is a numerical polynomial. Prove that in the binomial representation (1), each $c_{j} \in \mathbb{Z}$. (Hint: Prove by induction on $\operatorname{deg} p$, using the Δ operator.)

We will use these to show the following:

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be any function. Suppose that there exists a numerical polynomial q such that $\Delta(f)(n)=q(n)$ for all $n \gg 0$. Then there exists a numerical polynomial p such that $f(n)=p(n)$ for all $n \gg 0$.

