Homework 12 Due: Friday, ??

1. The ring of *dual numbers* is $k[\epsilon] = k[t]/(t^2)$, where ϵ is the coset $t + (t^2)$. Note that as a vector space, $k[\epsilon] = \{a_0 + a_1\epsilon : a_0, a_1 \in k\}$. *Make sure you understand how multiplication works in this ring.*

Let *X* be a variety, and let $P \in X$.

- (a) Let $\alpha : \mathcal{O}_{P,X} \to k[\epsilon]$ be a ring homomorphism. Define a map $D_{\alpha} : \mathcal{O}_{P,X} \to k$ as follows: For $f \in \mathcal{O}_{P,X}$, write $\alpha(f) = a_0 + a_1\epsilon$, and let $D_{\alpha}(f) = a_1$. Show that D_{α} is a *k*-linear derivation.
- (b) Conversely, given $D \in \text{Der}_k(\mathcal{O}_{P,X}, k)$, explain how to find $\alpha \in \text{Hom}(\mathcal{O}_{P,X}, k[\epsilon])$ such that $D = D_{\alpha}$.
- 2. Fix $n \in \mathbb{N}$, and consider $\operatorname{Mat}_n(k[\epsilon])$. Note that any $M \in \operatorname{Mat}_N(k[\epsilon])$ can be written as $M_0 + \epsilon M_1$, where $M_0, M_1 \in \operatorname{Mat}_n(k)$. Let I_n be the identity matrix.
 - (a) Suppose $A, B \in Mat_n(k[\epsilon])$. Show that

$$(I_n + \epsilon A)(I_n + \epsilon B) = I_n + \epsilon (A + B).$$

- (b) Show that for any $A \in Mat_n(k)$, $I_n + \epsilon A \in GL_n(k[\epsilon])$.
- (c) Describe those $A \in Mat_2(k)$ for which $I_2 + \epsilon A \in SL_2(k[\epsilon])$.

Extra credit: Do the last question for general n.

3. Prove that a polynomial $f \in k[T]$ is a local parameter at the point $T = \alpha$ if and only if α is a simple root of f.

The next questions are combinatorial, not algebro-geometric; but we'll be using the results later on.

4. A *numerical polynomial* is a polynomial $p(z) \in \mathbb{Q}[z]$ such that $p(n) \in \mathbb{Z}$ for all sufficiently large integers. For example, the binomial coefficient function

$$\binom{z}{r} := \frac{z(z-1)\cdots(z-r+1)}{r!}$$

is a numerical polynomial. (Set $\binom{z}{0} = 1$.)

For any function *f* on the integers, define its *difference function* to be $\Delta(f) : n \mapsto f(n+1) - f(n)$. You should read, but not hand in, (a), (b) and (c).

(a) The sum and difference of numerical polynomials are numerical polynomials. $\Delta(f - g) = \Delta(f) - \Delta(g)$.

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006

- (b) If *f* is a numerical polynomial of degree $r \ge 1$, then $\Delta(f)$ is a numerical polynomial of degree r 1.
- (c) Suppose that $p(z) \in \mathbb{Q}[z]$ (not necessarily numerical) has degree *r*. Show that there are unique numbers $c_0, \dots, c_r \in \mathbb{Q}$ so that

$$p(z) = \sum_{j=0}^{r} c_j \binom{z}{j}.$$
(1)

We will call this the *binomial representation* of p(z).

- (d) Express $\Delta(\binom{z}{r})$ as a binomial coefficient function.
- (e) Given a binomial representation of p(z) as in (1), find a binomial representation for $\Delta(p)$.
- (f) Suppose p(z) is a numerical polynomial, that $c_0 \in \mathbb{Q}$ and that $p(z) c_0$ is also a numerical polynomial. Then $c_0 \in \mathbb{Z}$.
- 5. Suppose *p* is a numerical polynomial. Prove that in the binomial representation (1), each $c_i \in \mathbb{Z}$. (HINT: *Prove by induction on* deg *p*, *using the* Δ *operator*.)

We will use these to show the following:

Let $f : \mathbb{Z} \to \mathbb{Z}$ be any function. Suppose that there exists a numerical polynomial q such that $\Delta(f)(n) = q(n)$ for all $n \gg 0$. Then there exists a numerical polynomial p such that f(n) = p(n) for all $n \gg 0$.

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006