## Homework 11

Due: Friday, November 10

1. Consider the Steiner surface $S \subset \mathbb{A}^{3}$ defined as the zero locus of

$$
F(x, y, z)=x^{2} y^{2}-x^{2} z^{2}+y^{2} z^{2}-x y z
$$

(a) Find (explicit, simple) equations for $T$, the singular locus of $S$.
(b) Find (explicit, simple) equations for $W$, the singular locus of $T$.

This is an example of the stratification we spoke about in class.
2. Let $X$ be an affine variety. Fix natural numbers $m$ and $n$, and let $A=\left(a_{i j}\right) \in \operatorname{Mat}_{m \times n}(k[X])$ be an $m \times n$ matrix of functions on $A$. For each nonnegative integer $r$, define

$$
\begin{aligned}
X_{A, \leq r} & =\left\{P \in X: \operatorname{rk}\left(a_{i j}(P)\right) \leq r\right\} \\
X_{A, r} & =\left\{P \in X: \operatorname{rk}\left(a_{i j}(P)\right)=r\right\}
\end{aligned}
$$

(a) Show that $X_{A, \leq r}$ is a closed subset of $X$.
(b) What can you say about $X_{A,=r}$ ?
3. *Let $X$ be variety. Show that $X$ can be written as a finite, disjoint union of smooth, locally closed subsets.
4. * Let $f(x, y) \in k[x, y]$ be a nonconstant polynomial. Let $X=\mathcal{Z}(f)$, and let $P=(a, b) \in X$. Assign weight 1 to $x-a$ and $y-b$. Then (HW9\#4) $f$ has a Taylor expansion centered at $P$ :

$$
\begin{aligned}
f= & f(P)+\left(\frac{\partial}{\partial x} f(P)(x-a)+\frac{\partial}{\partial y} f(P)(y-b)\right)+ \\
& \frac{1}{2}\left(\frac{\partial^{2}}{\partial x^{2}} f(P)(x-a)^{2}+2 \frac{\partial^{2}}{\partial x \partial y} f(P)(x-a)(y-b)+\frac{\partial^{2}}{\partial y^{2}} f(P)(y-b)^{2}\right)+\cdots \\
= & \sum f_{i}
\end{aligned}
$$

where $f_{i}$ is homogeneous (in this new weighting) of degree $i$.
The initial term, or leading term, of $f$ at $P, \operatorname{In}_{P}(f)$, is the nonzero term $f_{i}$ of smallest degree. The tangent cone of $X$ at $P$ is $\mathcal{Z}\left(\operatorname{In}_{P}(f)\right)$.
For each of the following planar curves $C$, compute the tangent cone of $C$ at $P=(0,0)$. Graph the real points of this tangent cone.
(a) $\alpha(x, y)=y-x^{2}$.

(b) $\beta(x, y)=y^{2}-x^{3}-x^{2}$

(c) $\gamma(x, y)=y^{2}-x^{3}$

(d) $\delta(x, y)=\left(x^{2}+y^{2}\right)^{2}+3 x^{2} y-y^{3}$

5. Suppose $F \in k[x, y]$ is homogeneous of degree $d \geq 1$. Show that there is a factorization

$$
F(x, y)=x^{e_{0}} \prod_{j=1}^{r}\left(y-a_{i} x\right)^{e_{i}}
$$

where $a_{i} \neq a_{j}$ for $i \neq j$.
If $F=\operatorname{In}_{(0,0)}(f)$, then $\operatorname{deg} F$ is the multiplicity of $\mathcal{Z}(f)$ at the origin, and $e_{i}$ is the multiplicity of $\mathcal{Z}(f)$ along the line $\mathcal{Z}\left(y-a_{i} x\right)$.

