Homework 10
Due: Friday, November 3

1. ${ }^{*}$ Consider the curve $Y=\mathcal{Z}\left(x y-x^{4}-y^{4}\right) \subset \mathbb{A}^{2}$. Recall that the blowup of \mathbb{A}^{2} at $(0,0)$ is $\mathcal{Z}(x V-y U) \subset \mathbb{A}^{2} \times \mathbb{P}^{1}$, where $[U, V]$ are coordinates on \mathbb{P}^{1}. Let π be the projection $\pi: \mathcal{Z}(x V-y U) \rightarrow \mathbb{A}^{2}$.

- What is $\pi^{-1}(Y-\{(0,0)\}) \subset \mathbb{A}^{2} \times \mathbb{P}^{1}$?
- What is $\pi^{-1}((0,0))$?
- Let \widetilde{Y} be the closure of $\pi^{-1}(Y-\{0\})$ in $\mathbb{A}^{2} \times \mathbb{P}^{1}$. What is $\widetilde{Y} \cap \pi^{-1}((0,0))$?

2. Let $R=k[x, y] /\left(x y-x^{4}-y^{4}\right)$, and let $K=\operatorname{Frac} R$.
(a) Show that R is not integrally closed in K.
(b) What is the integral closure of R in K ?
3. ${ }^{*}$ Cremona, revisited Consider the rational map

$$
\begin{gathered}
\mathbb{P}^{2}-\cdots+\mathbb{P}^{2} \\
{\left[a_{0}, a_{1}, a_{2}\right] \longmapsto\left[a_{1} a_{2}, a_{0} a_{2}, a_{0} a_{1}\right]}
\end{gathered}
$$

defined on $\mathbb{P}^{2}-\{[1,0,0],[0,1,0],[0,0,1]\}$. Let X_{0}, X_{1} and X_{2} be coordinates on the first copy of \mathbb{P}^{2}, and let Y_{0}, Y_{1} and Y_{2} be coordinates on the second copy.
The closure in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ of the graph of ϕ is the correspondence $Z \subset \mathbb{P}^{2} \times \mathbb{P}^{2}$ given by

$$
Z=\mathcal{Z}_{\mathbb{P}}\left(X_{0} Y_{0}-X_{1} Y_{1}, X_{1} Y_{1}-X_{2} Y_{2}\right)
$$

Let $P=\left[a_{0}, a_{1}, a_{2}\right]$.
(a) Suppose $a_{0} a_{1} a_{2} \neq 0$. What is $Z[P]$?
(b) Suppose $a_{0}=0, a_{1} a_{2} \neq 0$. What is $Z[P]$?
(c) Suppose $a_{0}=a_{1}=0, a_{2} \neq 0$. What is $Z[P]$?
4. Let W, X and Y be irreducible projective varieties. Suppose $Z_{W X} \subset W \times X$ and $Z_{X Y} \subset$ $X \times Y$ are correspondences. Explain how to "compose" these to obtain a correspondence $Z \subset W \times Y$. If $P \in W$, what is $Z[P]$?

