Homework 10 Due: Friday, November 3

- 1. *****Consider the curve $Y = \mathcal{Z}(xy x^4 y^4) \subset \mathbb{A}^2$. Recall that the blowup of \mathbb{A}^2 at (0,0) is $\mathcal{Z}(xV yU) \subset \mathbb{A}^2 \times \mathbb{P}^1$, where [U, V] are coordinates on \mathbb{P}^1 . Let π be the projection $\pi : \mathcal{Z}(xV yU) \to \mathbb{A}^2$.
 - What is $\pi^{-1}(Y \{(0,0)\}) \subset \mathbb{A}^2 \times \mathbb{P}^1$?
 - What is $\pi^{-1}((0,0))$?
 - Let \widetilde{Y} be the closure of $\pi^{-1}(Y \{0\})$ in $\mathbb{A}^2 \times \mathbb{P}^1$. What is $\widetilde{Y} \cap \pi^{-1}((0,0))$?

2. Let $R = k[x, y]/(xy - x^4 - y^4)$, and let K = Frac R.

- (a) Show that *R* is not integrally closed in *K*.
- (b) What is the integral closure of *R* in *K*?
- 3. * *Cremona, revisited* Consider the rational map

$$\mathbb{P}^2 \xrightarrow{\phi} \mathbb{P}^2$$

$$[a_0, a_1, a_2] \longmapsto [a_1 a_2, a_0 a_2, a_0 a_1]$$

defined on $\mathbb{P}^2 - \{[1, 0, 0], [0, 1, 0], [0, 0, 1]\}$. Let X_0 , X_1 and X_2 be coordinates on the first copy of \mathbb{P}^2 , and let Y_0 , Y_1 and Y_2 be coordinates on the second copy.

The closure in $\mathbb{P}^2 \times \mathbb{P}^2$ of the graph of ϕ is the correspondence $Z \subset \mathbb{P}^2 \times \mathbb{P}^2$ given by

$$Z = \mathcal{Z}_{\mathbb{P}}(X_0 Y_0 - X_1 Y_1, X_1 Y_1 - X_2 Y_2).$$

Let $P = [a_0, a_1, a_2]$.

- (a) Suppose $a_0a_1a_2 \neq 0$. What is Z[P]?
- (b) Suppose $a_0 = 0$, $a_1a_2 \neq 0$. What is Z[P]?
- (c) Suppose $a_0 = a_1 = 0$, $a_2 \neq 0$. What is Z[P]?
- 4. Let W, X and Y be irreducible projective varieties. Suppose $Z_{WX} \subset W \times X$ and $Z_{XY} \subset X \times Y$ are correspondences. Explain how to "compose" these to obtain a correspondence $Z \subset W \times Y$. If $P \in W$, what is Z[P]?

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006