Homework 1
Due: Friday, August 25

1. Let $S \subset \mathbb{A}^{n}$ be any subset. Prove that

$$
\mathcal{I}(S):=\left\{f \in k\left[x_{1}, \cdots, x_{n}\right]: \forall P \in S, f(P)=0\right\}
$$

is an ideal of $k\left[x_{1}, \cdots, x_{n}\right]$.
2. Describe all maximal ideals of each of the following rings.
(a) $\mathbb{C}[x]$
(b) $\mathbb{R}[x]$
(c) $\mathbb{Q}[x]$
3. (a) Define affine sets by

$$
\begin{aligned}
& X=\left\{\left(a_{1}, a_{2}\right): a_{2}^{2}=a_{1}^{3}-a_{1}\right\} \subset \mathbb{A}^{2} \\
& Y=\left\{\left(b_{1}, b_{2}, b_{3}\right): b_{2}^{2}+b_{1}=b_{3} b_{1} \text { and } b_{1}^{2}=b_{3}\right\} \subset \mathbb{A}^{3}
\end{aligned}
$$

Consider the map

$$
\begin{gathered}
\mathbb{A}^{2} \xrightarrow{\alpha} \mathbb{A}^{3} \\
\left(a_{1}, a_{2}\right) \longmapsto\left(a_{1}, a_{2}, a_{1}^{2}\right)
\end{gathered}
$$

Show that $\alpha(X) \subseteq Y$.
(b) Define ideals by

$$
\begin{aligned}
& I=\left(x_{2}^{2}-x_{1}^{3}+x_{1}\right) \subset k\left[x_{1}, x_{2}\right] \\
& J=\left(t_{2}^{2}+t_{1}-t_{3} t_{1}, t_{1}^{2}-t_{3}\right) \subset k\left[t_{1}, t_{2}, t_{3}\right]
\end{aligned}
$$

Consider the map

$$
\begin{array}{r}
k\left[t_{1}, t_{2}, t_{3}\right] \xrightarrow{\beta} k\left[x_{1}, x_{2}\right] \\
t_{1} \longmapsto x_{1} \\
t_{2} \longmapsto x_{2} \\
t_{3} \longmapsto x_{1}^{2}
\end{array}
$$

Show that $\beta(J) \subseteq I$.
4. Consider the following ideals in $k[x, y, z]$:

$$
\begin{aligned}
& I_{1}=\left(x y+y^{2}, x z+y z\right) \\
& I_{2}=\left(x y+y^{2}, x z+y z+x y z+y^{2} z\right) \\
& I_{3}=\left(x y^{2}+y^{3}, x z+y z\right)
\end{aligned}
$$

For which $i, j \in\{1,2,3\}$ do we have
(a) $I_{i}=I_{j}$?
(b) $\mathcal{Z}\left(I_{i}\right)=\mathcal{Z}\left(I_{j}\right)$?
(Hint: Factor!)

