12.1 Calibration

Let $X \subset \mathbb{P}^n$ be a (not necessarily irreducible) closed algebraic subset. In this section, we'll look at a device which measures the way X sits inside \mathbb{P}^n .

Throughout this section, let $S = k[X_0, \dots, X_n]$ be the homogeneous coordinate ring of \mathbb{P}^n , and let S(X) be the homogeneous coordinate ring of X. Then S(X) is a graded module over the graded ring S. Define the *Hilbert function* of X by

$$h_X(\ell) = \dim S(X)_\ell,$$

the dimension of the ℓ^{th} graded piece of the coordinate ring of *X*. Recall that this is isomorphic to $S_{\ell}/\mathcal{I}(X)_{\ell}$.

Example $h_{\mathbb{P}^n}(\ell) = \binom{n+\ell}{\ell}$. We saw this before when were examining the Veronese embedding. This means that

$$h_X(\ell) = h_{\mathbb{P}^n}(\ell) - \dim_k \mathcal{I}(X)_\ell$$

Example Suppose that *X* consists of three distinct points in \mathbb{P}^2 . They either do or don't live on a line...

- If the points are collinear, then there is a linear relation in $\mathcal{I}(X)$, and $h_X(1) = 2 1 = 1$.
- If the points are not collinear, then there is not a linear relation in $\mathcal{I}(X)$, and $h_X(1) = 2 0 = 2$.

Having said that, we have:

Claim If *X* consists of three distinct points in \mathbb{P}^2 , then $h_X(2) = 3$.

Proof For each point P_i , let L_i be a linear form which vanishes on P_i , but not on the others. Then the product L_iL_j is a quadratic function which vanishes on P_i and P_j , but not the other. This gives a surjective map from $S(\mathbb{P}^2)_2$ to the space of functions on X, so that $h_X(3) = \binom{2+2}{2} - 3 = 3$. In fact, for all $\ell \ge 3$, $h_X(\ell) = 3$, no matter what position the points are. Two things worth pointing out:

• For small ℓ , $h_X(\ell)$ depends on the arrangement of *X*.

Professor Jeff Achter Colorado State University 69

• For sufficiently large ℓ , this difference is erased.

Here is another example. Suppose *X* is a hypersurface in \mathbb{P}^n ; say $\mathcal{I}(X) = (F)$, with $F \subset k[X_0, \dots, X_n]$ of degree *d*. Then $\mathcal{I}(X)_m$ is the polynomials of degree *m* which are divisible by *F*. This means that "multiplication by *F*" gives an isomorphism between S_{m-d} and $\mathcal{I}(X)_m$, so that

$$h_X(m) = h_{\mathbb{P}^n}(m) - h_{\mathbb{P}^n}(m-d)$$

Assume $\ell \geq d$; then

$$= \binom{n+\ell}{\ell} - \binom{n+\ell-d}{\ell-d}$$

For instance, if n = 2, then

$$= d\ell - \frac{d(d-3)}{2}.$$

There's a regularity there which is independent of the curve. The goal of this chapter is to generalize these remarks...

12.2 Algebra

12.2.1 Numerical polynomials

See homework. The point is that a function $h : \mathbb{N} \to \mathbb{Z}$ is called a numerical polynomial if there's some $P \in \mathbb{Q}[z]$ such that, for $\ell \gg 0$, $h(\ell) = P(\ell)$.

12.2.2 Hilbert polynomials of graded modules

Let *S* be a graded noetherian ring. A *S*-module *M* is *graded* if it comes equipped with a decomposition

$$M = \oplus M_d$$

such that $S_d M_e \subseteq M_{d+e}$.

If $\ell \in \mathbb{N}$, the twist of *M* by ℓ is the same module with the grading shifted:

$$M(\ell)_d = M_{d+\ell}.$$

The annihilator of M is

$$\operatorname{Ann}(M) = \{ x \in S : x \cdot M = 0 \}.$$

If *M* is graded, this is a homogeneous ideal in *S*.

Professor Jeff Achter Colorado State University 70

Lemma Let *M* be a finitely generated graded module over *S*. There exists a filtration

$$0 \subset M^0 \subset M^1 \subset \cdots \subset M^r = M$$

by graded submodules such that for each *i*,

$$M^i/M^{i-1} \cong (S/\mathfrak{p}_i)(\ell_i)$$

where $\mathfrak{p}_i \subset S$ is a homogeneous prime ideal and $\ell \in \mathbb{Z}$.

Proof The proof is just like the existence of prime ideal factorizations in noetherian rings.

Given any M, let $\mathcal{F}(M)$ be the set of graded submodules of M which admit such a filtration. It's nonempty, since (0) is in this class. Let $M' \subset M$ be a maximal element; it exists, since M is a noetherian module. Consider M'' = M/M'. If M'' = 0, we're done.

Otherwise, consider the collection of ideals which are annihilators of homogeneous elements,

 $\mathcal{I} = \{I_m = \operatorname{Ann}(m) : m \in M'' - \{0\} \text{ homogeneous } \}.$

Then each I_m is a proper homogeneous ideal. By noetherianness, we can take a maximal element I_m of \mathcal{I} .

Claim I_m is prime.

Suppose $a, b \in S$, $ab \in I_m$, $b \notin I_m$; we'll show $a \in I_m$. By taking homogeneous components, we may assume a and b are homogeneous. Consider $bm \in M''$. Since $b \notin I_m$, $bm \neq 0$. Since $I_m \subseteq bm$, by maximality $I_m = I_{bm}$; but then abm = 0, so $a \in I_{bm} = I_m$.

So, I_m is a homogeneous prime ideal, call it \mathfrak{p} . Let deg $(m) = \ell$. Then the module $N \subset M''$ generated by *m* is isomorphic to $(S/\mathfrak{p})(-\ell)$. Lift this:

$$N' \longrightarrow M$$
$$N \cong (S/\mathfrak{p})(-\ell) \longrightarrow M''$$

Then $M' \subseteq N'$, $N'/M' \cong (S/\mathfrak{p})(-\ell)$; N' has a suitable filtration, which contradicts the maximality of M'. Therefore, M' = M.

The prime ideals $\{p_1, \dots, p_r\}$ which show up should be thought of as the "elementary divisors" of the *S*-module *M*. Among them, we distinguish the minimal ones; these are the minimal primes of *M*.

Lemma Let $\mathfrak{p} \subseteq S$ be a homogeneous prime ideal. Then $\mathfrak{p} | \operatorname{Ann}(M)$ if and only if $\mathfrak{p} \supseteq \mathfrak{p}_i$ for one of the minimal primes \mathfrak{p}_i of *M*.

71

Professor Jeff Achter Colorado State University

Proof $\mathfrak{p} \supseteq \operatorname{Ann}(M)$ if and only if \mathfrak{p} annihilates some M^i/M^{i-1} . But $\operatorname{Ann}((S/\mathfrak{p}_i)(\ell)) = \mathfrak{p}_i$. \Box Recall that the localization of *S* at a prime ideal \mathfrak{p} is

$$S_{\mathfrak{p}} = \{\frac{x}{s} : \deg x = \deg s, s \notin \mathfrak{p}\}.$$

Lemma Let \mathfrak{p} be a minimal prime of M, and choose any filtration as above. Then the number of i for which $\mathfrak{p}_i = \mathfrak{p}$ is the length of $M_{\mathfrak{p}}$ as $S_{\mathfrak{p}}$ -module, where $S_{\mathfrak{p}}$ is the localization.

Proof Choose some filtration. For each *i* with $p_i \neq p$, there exists $a \in p_i$ which is a unit in S_p , so that

$$M^i_{\mathfrak{p}}/M^{i-1}_{\mathfrak{p}} \cong S_{\mathfrak{p}} \otimes_S (S/\mathfrak{p}_i)$$

 $\cong (0).$

(Use the fact that $1 \otimes 1 = (a^{-1} \cdot a) \otimes 1 = a^{-1} \otimes a = 0.$)

On the other hand, if $\mathfrak{p} = \mathfrak{p}_i$, then

$$M^i_{\mathfrak{p}}/M^{i-1}_{\mathfrak{p}} \cong S_{\mathfrak{p}} \otimes (S/\mathfrak{p})$$

 $\cong (S/\mathfrak{p}).$

Therefore, M_p is an S_p -module of the advertised length.

Definition The multiplicity of *M* at \mathfrak{p} is $\mu_{\mathfrak{p}}(M)$, the length of $M_{\mathfrak{p}}$ over $S_{\mathfrak{p}}$.

12.3 Hilbert-Serre theorem

Attached to a graded module is the Hilbert function,

$$h_M(\ell) = \dim_k M_\ell.$$

Theorem [Hilbert-Serre] Let $S = k[x_0, \dots, x_n]$ with the standard grading, and let M be a finitely generated graded S-module. Then there is a unique polynomial $P_M(z) \in \mathbb{Q}[z]$ such that, for $\ell \gg 0$, $h_M(\ell) = P_M(\ell)$. Moreover, deg $P_M = \dim \mathbb{Z}_{\mathbb{P}^n}(\operatorname{Ann}(M))$.

Remark We assign deg 0 = -1, and dim $\emptyset = -1$.

Professor Jeff Achter Colorado State University 72

M672: Algebraic geometry Fall 2006

Proof A homomorphism of graded modules necessarily preserves the grading. Therefore, any short exact sequence of graded modules

$$0 \longrightarrow M^1 \longrightarrow M^2 \longrightarrow M^3 \longrightarrow 0$$

yields the equality

$$h_{M^1}(\ell) + h_{M^2}(\ell) = h_{M^3}(\ell)$$

for each ℓ . After choosing a filtration as above, it suffices to prove the theorem for $(S/\mathfrak{p})(\ell)$. Since $h_{M(\ell)}(d) = h_M(d + \ell)$, it suffices to prove the theorem for $M = (S/\mathfrak{p})$. We distinguish two cases, the first of which is the base case and the second is an inductive step, by induction on dim $\mathcal{Z}(\operatorname{Ann}(M))$.

- Suppose $\mathfrak{p} = (X_0, \dots, X_n)$. Then $h_M(\ell) = 0$ for $\ell > 0$, and thus for $\ell \gg 0$. Moreover, $\mathcal{Z}(\mathfrak{p}) = \emptyset$, so that dim $\mathcal{Z}(\mathfrak{p}) = \deg h_M = -1$.
- Otherwise, suppose $X_i \notin p$. Then remember that deg $x_i = 1$ we have an exact sequence

$$0 \longrightarrow M(-1) \xrightarrow{x_i} M \longrightarrow M'' = M/x_i M \longrightarrow 0,$$

and $h_{M''}(\ell) = h_M(\ell) - h_M(\ell - 1) = (\Delta h_M)(\ell - 1).$

Now, $\mathcal{Z}(\operatorname{Ann}(M'')) = \mathcal{Z}(\mathfrak{p}) \cap \mathcal{Z}(x_i)$. The hyperplane section $\mathcal{Z}(x_i)$ doesn't contain $\mathcal{Z}(\mathfrak{p})$ (by hypothesis), so that dim $\mathcal{Z}(\operatorname{Ann}(M'')) = \dim \mathcal{Z}(\mathfrak{p}) - 1$. By induction, $h_{M''}$ is a numerical polynomial, represented by a polynomial $P_{M''}$ of degree dim $\mathcal{Z}(\operatorname{Ann}(M''))$. Since (Δh_M) is a numerical polynomial of degree dim $\mathcal{Z}(\operatorname{Ann}(M)) - 1$, h_M is a numerical polynomial of degree dim $\mathcal{Z}(\operatorname{Ann}(M))$.

The only missing ingredient is the lemma promised in the homework:

Lemma Let $f : \mathbb{Z} \to \mathbb{Z}$ be any function. Suppose that there exists a numerical polynomial q such that $\Delta(f)(n) = q(n)$ for all $n \gg 0$. Then there exists a numerical polynomial p such that f(n) = p(n) for all $n \gg 0$.

Proof By the homework, there exists a polynomial $Q(z) = \sum_{j=0}^{r} c_j {\binom{z}{j}}$ such that, for $n \gg 0$, Q(n) = q(n). Let

$$P(z) = \sum_{j=0}^{r} c_j \binom{z}{j+1}.$$

Then for $n \gg 0$, $\Delta(P) = \Delta(f) = Q(n) = q(n)$, so that $\Delta(P - f)(n) = 0$ for $n \gg 0$. Therefore, (P - f)(n) = a for some $a \in \mathbb{Z}$ and all $n \gg 0$, so that f(n) = P(n) - a is a numerical polynomial. \Box

Professor Jeff Achter Colorado State University 73

12.4 Geometry of the Hilbert polynomial

Definition Suppose $Y \subset \mathbb{P}^n$. The Hilbert polynomial P_Y of Y is the Hilbert polynomial of its homogeneous coordinate ring S(Y). Note that deg $P_Y = \dim Y$. The *degree* of Y is $(\dim Y)$! times the leading coefficient of P_Y .

Remark Since *P*_Y is a numerical polynomial, it has a binomial representation

$$P_Y(z) = \sum_{j=0}^r c_j \binom{z}{j}.$$
(1)

with $c_j \in \mathbb{Z}$; then deg $Y = c_r$.

Lemma If $Y \subset \mathbb{P}^n$ is nonempty, then deg $(Y) \in \mathbb{N}$.

Proof Since $Y \neq \emptyset$, P_Y is a nonzero polynomial of degree $r = \dim Y$. Then deg $Y = c_r \in \mathbb{Z}$, as above. It's positive since there are functions on *Y* of arbtirarily large degree, so that $h_Y(\ell) > 0$ infinitely often.

Lemma Suppose $Y \subset \mathbb{P}^n$, $Y = Y_1 \cup Y_2$, dim $Y_1 = \dim Y_2 = r$, dim $(Y_1 \cap Y_2) < r$. Then deg $Y = \deg Y_1 + \deg Y_2$.

Proof Let $I_j = \mathcal{I}(Y_j)$, and let $I = I_1 \cap I_2 = \mathcal{I}(Y)$. Note that $\mathcal{I}(Y_1 \cap Y_2) = \sqrt{(I_1 + I_2)}$. There is an exact sequence

 $0 \longrightarrow S/I \longrightarrow S/I_1 \oplus S/I_2 \longrightarrow S/(I_1 + I_2) \longrightarrow 0$

Since dim $(Y_1 \cap Y_2) < r$, deg $P_{S/(I_1+I_2)} < r$, and the leading coefficient of S/I is the sum of the leading coefficients of those of S/I_1 and S/I_2 .

Lemma deg $\mathbb{P}^n = 1$

Proof Use the earlier calculation of $P_{\mathbb{P}^n}(z)$.

Lemma If $H \subset \mathbb{P}^n$ is a hypersurface whose ideal is generated by a homogeneous polynomial of degree *d*, then deg H = d.

Professor Jeff Achter Colorado State University 74

M672: Algebraic geometry Fall 2006

Proof Suppose $\mathcal{I}(H) = (F)$, *F* homogeneous of degree *d*. There's a diagram of graded modules

$$0 \longrightarrow S(-d) \xrightarrow{F} S \longrightarrow S(H) = S/(F) \longrightarrow 0$$

Then

$$h_H(\ell) = h_{\mathbb{P}^n}(\ell) - h_{\mathbb{P}^n}(\ell - d)$$

$$h_H(z) = h_{\mathbb{P}^n}(z) - h_{\mathbb{P}^n}(z - d)$$

$$= \binom{z+n}{n} - \binom{z-d+n}{n}$$

$$= \frac{d}{(n-1)!} z^{n-1} + \cdots$$

and the degree of H is d.

Remark The degree depends not just on the variety, but on the way it sits in the ambient projective space. *Do an example of the d-uple embedding?*

12.5 Intersection theory

Let $X \subset \mathbb{P}^n$ be a projective variety, not necessarily irreducible, of pure dimension r. Let $H \subset \mathbb{P}^n = \mathcal{Z}(F)$ be some hypersurface – choose F reduced. By the principal ideal theorem,

$$X \cap H = Z_1 \cup \cdots \cup Z_m,$$

where dim $Z_j = r - 1$. Each Z_j corresponds to a homogeneous prime ideal $\mathfrak{p}_j = \mathcal{I}_X(Z_j)$. Let $S = k[X_0, \dots, X_n]$. Then we have homogeneous coordinate rings

$$S(X) = S/\mathcal{I}(X)$$

$$S(H) = S/\mathcal{I}(H) = S/(F)$$

$$S(X \cap H) = S/\sqrt{(\mathcal{I}(X) + \mathcal{I}(H))}$$

Note that, as *S*-module, $Ann(S(X \cap H)) = \mathcal{I}(X) + \mathcal{I}(H)$, and the minimal primes of this module are simply the $\mathfrak{p}_1, \dots, \mathfrak{p}_m$.

Definition The intersection multiplicity of X and H along Z_i is

$$i(X, H; Z_j) = \mu_{p_j}(S/(\mathcal{I}(X) + \mathcal{I}(H))).$$

Professor Jeff Achter Colorado State University 75

M672: Algebraic geometry Fall 2006

Example Consider the elliptic curve $E = \mathcal{Z}_{\mathbb{P}}(Y^2Z - X^3 + XZ^2) \subset \mathbb{P}^2$, and assume we're not in characteristic three. Let *H* be the hyperplane $H = \mathcal{Z}(Y)$. Then we compute intersection multiplicities by looking at the module

$$M = \frac{k[X, Y, Z]}{(Y^2 Z - X^3 + XZ^2, Y)}$$
$$= \frac{k[X, Y, Z]}{(X^3 - XZ^2, Y)} \cong \frac{k[X, Z]}{X(X - Z)(X + Z)}$$
$$\cong \frac{k[X, Z]}{X(X - Z)(X + Z)}$$

Note that as a *k*-module, this has dimension three. There are three maximal ideals of k[X, Z] which contain the ideal $(X^3 - XZ^2)$, namely, (X), (X - Z), (X + Z). These are the three (minimal) prime ideals associated with this module. Let, say, $\mathfrak{p} = (X - Z)$. If we localize k[X, Y] at \mathfrak{p} , then we invert (in particular) X and X + Z, so that

$$M_{\mathfrak{p}} \cong k[X,Z]/(X-Z)$$

has length one as M_p -module. The same is true for the other ideals.

Example Same elliptic curve, but now consider the hyperplane $W = \mathcal{Z}(X - Z)$. Then the module in question is

$$N = \frac{k[X, Y, Z]}{(Y^2 Z - X^3 + XZ^2, X - Z)}$$
$$= \frac{k[X, Y]}{(Y^2 X - X^3 + X^3)}$$
$$= \frac{k[X, Y]}{(Y^2 X)}.$$

The minimal primes of this module are (Y) and (X), corresponding to the (projective) points [1, 0, 1] and [0, 1, 0] (the "point at infinity"), respectively. The multiplicities at these points are two and one, respectively.

Theorem With all notation as above (especially, $X \not\subset H$),

$$\sum_{j=1}^{s} i(X, H; Z_j) \cdot \deg(Z_j) = (\deg X)(\deg H).$$

Professor Jeff Achter Colorado State University 76

Proof Suppose deg H = d, $H = \mathcal{Z}(F)$, F reduced. Let $M = S/(\mathcal{I}(X) + \mathcal{I}(H))$. As before, we have an exact sequence

$$0 \longrightarrow S(X)(-d) \xrightarrow{F} S(X) \longrightarrow M \longrightarrow 0$$

so that

$$P_M(z) = P_X(z) - P_X(z-d).$$

Consider a (maximal) filtration $M^0 \subset M^1 \subset \cdots \subset M^q = M$, with quotients $M^i/M^{i-1} \cong (S/\mathfrak{q}_i)(\ell_i)$. Then

$$P_M(z) = \sum P_{(S/\mathfrak{q}_i)(\ell_i)}(z).$$

Suppose $\mathcal{Z}(q_i)$ is a projective variety of dimension r_i and degree d_i ; then its Hilbert polynomial has degree r_i . Only the minimal primes contribute to the leading coefficient of the Hilbert polynomial of M, since the rest have degree less than r - 1.

Twisting doesn't affect the leading coefficient of the Hilbert polynomial, so that the leading coefficient is

$$lcoeff P_M(z) = lcoeff \sum_{j=1:q_j \text{ minimal}}^q P_{(S/q_i)}(z)$$
$$= \sum_j \mu_{\mathfrak{p}_j}(M) \operatorname{lcoeff} P_{(S/\mathfrak{p}_j)}(z)$$
$$= \sum_j i(X, H; Z_j) \operatorname{lcoeff} P_{(S/q_i)}(z)$$

multiply by (r-1)!, then

$$\deg(X \cap H) = \sum_{j} i(X, H; Z_j) \deg(Z_j)$$

as desired.

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006