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12 Hilbert polynomials

12.1 Calibration

Let X ⊂ Pn be a (not necessarily irreducible) closed algebraic subset. In this section, we’ll look at
a device which measures the way X sits inside Pn.

Throughout this section, let S = k[X0, · · · , Xn] be the homogeneous coordinate ring of Pn, and let
S(X) be the homogeneous coordinate ring of X. Then S(X) is a graded module over the graded
ring S. Define the Hilbert function of X by

hX(`) = dim S(X)`,

the dimension of the `th graded piece of the coordinate ring of X. Recall that this is isomorphic to
S`/I(X)`.

Example hPn(`) = (n+`
` ). We saw this before when were examining the Veronese embedding.

This means that

hX(`) = hPn(`)− dimk I(X)`

Example Suppose that X consists of three distinct points in P2. They either do or don’t live on a
line...

• If the points are collinear, then there is a linear relation in I(X), and hX(1) = 2− 1 = 1.

• If the points are not collinear, then there is not a linear relation in I(X), and hX(1) = 2− 0 =
2.

Having said that, we have:

Claim If X consists of three distinct points in P2, then hX(2) = 3.

Proof For each point Pi, let Li be a linear form which vanishes on Pi, but not on the others. Then
the product LiL j is a quadratic function which vanishes on Pi and Pj, but not the other. This gives
a surjective map from S(P2)2 to the space of functions on X, so that hX(3) = (2+2

2 )− 3 = 3.

In fact, for all ` ≥ 3, hX(`) = 3, no matter what position the points are. Two things worth pointing
out:

• For small `, hX(`) depends on the arrangment of X.
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• For sufficiently large `, this difference is erased.

Here is another example. Suppose X is a hypersurface in Pn; say I(X) = (F), with F ⊂ k[X0, · · · , Xn]
of degree d. Then I(X)m is the polynomials of degree m which are divisible by F. This means that
“multiplication by F” gives an isomorphism between Sm−d and I(X)m, so that

hX(m) = hPn(m)− hPn(m− d)

Assume ` ≥ d; then

=
(

n + `

`

)
−

(
n + `− d

`− d

)
For instance, if n = 2, then

= d`− d(d− 3)
2

.

There’s a regularity there which is independent of the curve. The goal of this chapter is to gener-
alize these remarks...

12.2 Algebra

12.2.1 Numerical polynomials

See homework. The point is that a function h : N → Z is called a numerical polynomial if there’s some
P ∈ Q[z] such that, for ` � 0, h(`) = P(`).

12.2.2 Hilbert polynomials of graded modules

Let S be a graded noetherian ring. A S-module M is graded if it comes equipped with a decompo-
sition

M = ⊕Md

such that Sd Me ⊆ Md+e.

If ` ∈ N, the twist of M by ` is the same module with the grading shifted:

M(`)d = Md+`.

The annihilator of M is
Ann(M) = {x ∈ S : x · M = 0}.

If M is graded, this is a homogeneous ideal in S.
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Lemma Let M be a finitely generated graded module over S. There exists a filtration

0 ⊆ M0 ⊆ M1 ⊆ · · · ⊆ Mr = M

by graded submodules such that for each i,

Mi/Mi−1 ∼= (S/pi)(`i)

where pi ⊂ S is a homogeneous prime ideal and ` ∈ Z.

Proof The proof is just like the existence of prime ideal factorizations in noetherian rings.

Given any M, let F (M) be the set of graded submodules of M which admit such a filtration. It’s
nonempty, since (0) is in this class. Let M′ ⊂ M be a maximal element; it exists, since M is a
noetherian module. Consider M′′ = M/M′. If M′′ = 0, we’re done.

Otherwise, consider the collection of ideals which are annihilators of homogeneous elements,

I = {Im = Ann(m) : m ∈ M′′ − {0} homogeneous }.

Then each Im is a proper homogeneous ideal. By noetherianness, we can take a maximal element
Im of I .

Claim Im is prime.

Suppose a, b ∈ S, ab ∈ Im, b 6∈ Im; we’ll show a ∈ Im. By taking homogeneous components, we
may assume a and b are homogeneous. Consider bm ∈ M′′. Since b 6∈ Im, bm 6= 0. Since Im ⊆ bm,
by maximality Im = Ibm; but then abm = 0, so a ∈ Ibm = Im.

So, Im is a homogeneous prime ideal, call it p. Let deg(m) = `. Then the module N ⊂ M′′

generated by m is isomorphic to (S/p)(−`). Lift this:

N′ - M

N ∼= (S/p)(−`) - M′′

Then M′ ⊆ N′, N′/M′ ∼= (S/p)(−`); N′ has a suitable filtration, which contradicts the maximality
of M′. Therefore, M′ = M.

The prime ideals {p1, · · · , pr} which show up should be thought of as the “elementary divisors”
of the S-module M. Among them, we distinguish the minimal ones; these are the minimal primes
of M.

Lemma Let p ⊆ S be a homogeneous prime ideal. Then p|Ann(M) if and only if p ⊇ pi for one
of the minimal primes pi of M.

Professor Jeff Achter
Colorado State University

71 M672: Algebraic geometry
Fall 2006



12 HILBERT POLYNOMIALS November 29, 2006

Proof p ⊇ Ann(M) if and only if p annihilates some Mi/Mi−1. But Ann((S/pi)(`)) = pi.

Recall that the localization of S at a prime ideal p is

Sp = { x
s

: deg x = deg s, s 6∈ p}.

Lemma Let p be a minimal prime of M, and choose any filtration as above. Then the number of
i for which pi = p is the length of Mp as Sp-module, where Sp is the localization.

Proof Choose some filtration. For each i with pi 6= p, there exists a ∈ pi which is a unit in Sp, so
that

Mi
p/Mi−1

p
∼= Sp ⊗S (S/pi)
∼= (0).

(Use the fact that 1⊗ 1 = (a−1 · a)⊗ 1 = a−1 ⊗ a = 0.)

On the other hand, if p = pi, then

Mi
p/Mi−1

p
∼= Sp ⊗ (S/p)
∼= (S/p).

Therefore, Mp is an Sp-module of the advertised length.

Definition The multiplicity of M at p is µp(M), the length of Mp over Sp.

12.3 Hilbert-Serre theorem

Attached to a graded module is the Hilbert function,

hM(`) = dimk M`.

Theorem [Hilbert-Serre] Let S = k[x0, · · · , xn] with the standard grading, and let M be a finitely
generated graded S-module. Then there is a unique polynomial PM(z) ∈ Q[z] such that, for ` � 0,
hM(`) = PM(`). Moreover, deg PM = dimZPn(Ann(M)).

Remark We assign deg 0 = −1, and dim ∅ = −1.
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Proof A homomorphism of graded modules necessarily preserves the grading. Therefore, any
short exact sequence of graded modules

0 - M1 - M2 - M3 - 0

yields the equality
hM1(`) + hM2(`) = hM3(`)

for each `. After choosing a filtration as above, it suffices to prove the theorem for (S/p)(`).
Since hM(`)(d) = hM(d + `), it suffices to prove the theorem for M = (S/p). We distinguish two
cases, the first of which is the base case and the second is an inductive step, by induction on
dimZ(Ann(M)).

• Suppose p = (X0, · · · , Xn). Then hM(`) = 0 for ` > 0, and thus for ` � 0. Moreover,
Z(p) = ∅, so that dimZ(p) = deg hM = −1.

• Otherwise, suppose Xi 6∈ p. Then – remember that deg xi = 1 – we have an exact sequence

0 - M(−1)
xi - M - M′′ = M/xi M - 0,

and hM′′(`) = hM(`)− hM(`− 1) = (∆hM)(`− 1).

Now, Z(Ann(M′′)) = Z(p)∩Z(xi). The hyperplane sectionZ(xi) doesn’t containZ(p) (by
hypothesis), so that dimZ(Ann(M′′)) = dimZ(p) − 1. By induction, hM′′ is a numerical
polynomial, represented by a polynomial PM′′ of degree dimZ(Ann(M′′)). Since (∆hM) is
a numerical polynomial of degree dimZ(Ann(M)) − 1, hM is a numerical polynomial of
degree dimZ(Ann(M)).

The only missing ingredient is the lemma promised in the homework:

Lemma Let f : Z → Z be any function. Suppose that there exists a numerical polynomial q
such that ∆( f )(n) = q(n) for all n � 0. Then there exists a numerical polynomial p such that
f (n) = p(n) for all n � 0.

Proof By the homework, there exists a polynomial Q(z) = ∑r
j=0 c j(z

j) such that, for n � 0,
Q(n) = q(n). Let

P(z) =
r

∑
j=0

c j

(
z

j + 1

)
.

Then for n � 0, ∆(P) = ∆( f ) = Q(n) = q(n), so that ∆(P− f )(n) = 0 for n � 0. Therefore, (P−
f )(n) = a for some a ∈ Z and all n � 0, so that f (n) = P(n)− a is a numerical polynomial.
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12.4 Geometry of the Hilbert polynomial

Definition Suppose Y ⊂ Pn. The Hilbert polynomial PY of Y is the Hilbert polynomial of its
homogeneous coordinate ring S(Y). Note that deg PY = dim Y. The degree of Y is (dim Y)! times
the leading coefficient of PY.

Remark Since PY is a numerical polynomial, it has a binomial representation

PY(z) =
r

∑
j=0

c j

(
z
j

)
. (1)

with c j ∈ Z; then deg Y = cr.

Lemma If Y ⊂ Pn is nonempty, then deg(Y) ∈ N.

Proof Since Y 6= ∅, PY is a nonzero polynomial of degree r = dim Y. Then deg Y = cr ∈ Z, as
above. It’s positive since there are functions on Y of arbtirarily large degree, so that hY(`) > 0
infinitely often.

Lemma Suppose Y ⊂ Pn, Y = Y1 ∪ Y2, dim Y1 = dim Y2 = r, dim(Y1 ∩ Y2) < r. Then deg Y =
deg Y1 + deg Y2.

Proof Let I j = I(Yj), and let I = I1 ∩ I2 = I(Y). Note that I(Y1 ∩Y2) =
√

(I1 + I2). There is an
exact sequence

0 - S/I - S/I1 ⊕ S/I2 - S/(I1 + I2) - 0

Since dim(Y1 ∩ Y2) < r, deg PS/(I1+I2) < r, and the leading coefficient of S/I is the sum of the
leading coefficients of those of S/I1 and S/I2.

Lemma deg Pn = 1

Proof Use the earlier calculation of PPn(z).

Lemma If H ⊂ Pn is a hypersurface whose ideal is generated by a homogeneous polynomial of
degree d, then deg H = d.
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Proof Suppose I(H) = (F), F homogeneous of degree d. There’s a diagram of graded modules

0 - S(−d)
F

- S - S(H) = S/(F) - 0

Then

hH(`) = hPn(`)− hPn(`− d)
hH(z) = hPn(z)− hPn(z− d)

=
(

z + n
n

)
−

(
z− d + n

n

)
=

d
(n− 1)!

zn−1 + · · ·

and the degree of H is d.

Remark The degree depends not just on the variety, but on the way it sits in the ambient projec-
tive space. Do an example of the d-uple embedding?

12.5 Intersection theory

Let X ⊂ Pn be a projective variety, not necessarily irreducible, of pure dimension r. Let H ⊂ Pn =
Z(F) be some hypersurface – choose F reduced. By the principal ideal theorem,

X ∩ H = Z1 ∪ · · · ∪ Zm,

where dim Z j = r− 1. Each Z j corresponds to a homogeneous prime ideal p j = IX(Z j).

Let S = k[X0, · · · , Xn]. Then we have homogeneous coordinate rings

S(X) = S/I(X)
S(H) = S/I(H) = S/(F)

S(X ∩ H) = S/
√

(I(X) + I(H))

Note that, as S-module, Ann(S(X ∩ H)) = I(X) + I(H), and the minimal primes of this module
are simply the p1, · · · , pm.

Definition The intersection multiplicity of X and H along Z j is

i(X, H; Z j) = µp j(S/(I(X) + I(H))).
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Example Consider the elliptic curve E = ZP(Y2Z − X3 + XZ2) ⊂ P2, and assume we’re not in
characteristic three. Let H be the hyperplane H = Z(Y). Then we compute intersection multiplic-
ities by looking at the module

M =
k[X, Y, Z]

(Y2Z− X3 + XZ2, Y)

=
k[X, Y, Z]

(X3 − XZ2, Y)
∼=

k[X, Z]
(X3 − XZ2)

∼=
k[X, Z]

X(X − Z)(X + Z)

Note that as a k-module, this has dimension three. There are three maximal ideals of k[X, Z] which
contain the ideal (X3 − XZ2), namely, (X), (X− Z), (X + Z). These are the three (minimal) prime
ideals associated with this module. Let, say, p = (X− Z). If we localize k[X, Y] at p, then we invert
(in particular) X and X + Z, so that

Mp
∼= k[X, Z]/(X − Z)

has length one as Mp-module. The same is true for the other ideals.

Example Same elliptic curve, but now consider the hyperplane W = Z(X − Z). Then the mod-
ule in question is

N =
k[X, Y, Z]

(Y2Z− X3 + XZ2, X − Z)

=
k[X, Y]

(Y2X − X3 + X3)

=
k[X, Y]
(Y2X)

.

The minimal primes of this module are (Y) and (X), corresponding to the (projective) points
[1, 0, 1] and [0, 1, 0] (the “point at infinity”), respectively. The multiplicities at these points are two
and one, respectively.

Theorem With all notation as above (especially, X 6⊂ H),

s

∑
j=1

i(X, H; Z j) · deg(Z j) = (deg X)(deg H).
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Proof Suppose deg H = d, H = Z(F), F reduced. Let M = S/(I(X) + I(H)). As before, we
have an exact sequence

0 - S(X)(−d)
F

- S(X) - M - 0

so that
PM(z) = PX(z)− PX(z− d).

Consider a (maximal) filtration M0 ⊂ M1 ⊂ · · · ⊂ Mq = M, with quotients Mi/Mi−1 ∼=
(S/qi)(`i). Then

PM(z) = ∑ P(S/qi)(`i)(z).

SupposeZ(qi) is a projective variety of dimension ri and degree di; then its Hilbert polynomial has
degree ri. Only the minimal primes contribute to the leading coefficient of the Hilbert polynomial
of M, since the rest have degree less than r− 1.

Twisting doesn’t affect the leading coefficient of the Hilbert polynomial, so that the leading coeffi-
cient is

lcoeff PM(z) = lcoeff
q

∑
j=1:q j minimal

P(S/qi)(z)

= ∑
j
µp j(M) lcoeff P(S/p j)(z)

= ∑
j

i(X, H; Z j) lcoeff P(S/qi)(z)

multiply by (r− 1)!, then

deg(X ∩ H) = ∑
j

i(X, H; Z j) deg(Z j)

as desired.
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