0.1 Noetherian rings and the Hilbert Basis Theorem

Definition A ring *R* is *noetherian* if it satisfies the ascending chain condition, namely, that every ascending chain of ideals is eventually stationary.

Concretely, given a chain of ideals $\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \cdots \subseteq \mathfrak{a}_n$, there exists some *m* such that $\mathfrak{a}_m = \mathfrak{a}_{m+1} = \cdots$.

Lemma Let *R* be a ring. The following are equivalent.

- Every ideal of *R* is finitely generated.
- R satisfies ACC
- Every nonempty collection of ideals $\{a_i : i \in \mathcal{I}\}$ has a maximal element.

Proof Suppose every ideal of *R* is finitely generated. Let $a_1 \subseteq a_2 \subseteq \cdots$ be an ascending chain of ideals. Let $a = \bigcup a_i$. It's an ideal of *R*. By hypothesis, $a = (f_1, \cdots, f_r)$ for *r* elements of *a*. For each *i*, $1 \leq i \leq r$, there's an n_i so that $f_i \in a_{n_i}$. Let $n = \max n_i$. Then $f_1, \cdots, f_r \in a_n$, so that $a \subseteq a_n \subseteq a_{n+1} \subseteq \cdots a$; the chain is stationary at *n*.

Suppose R satisfies the ACC. Take $i_1 \in I$, and iterate the following. Suppose i_1, \dots, i_j have been chosen. If \mathfrak{a}_{i_j} is maximal, stop. Otherwise, there is some $\mathfrak{a}_{i_{j+1}}$ which properly contains it. So, consider the chain $\mathfrak{a}_{i_1} \subset \mathfrak{a}_{i_2} \subset$. It's ascending, thus eventually stationary, and some \mathfrak{a}_{i_m} is maximal.

Finally, suppose every nonempty collection of ideals has a maximal element. Let \mathfrak{a} be any ideal. Consider the set S of all subideals of \mathfrak{a} which are finitely generated. It has a maximal element, \mathfrak{b} . I claim that $\mathfrak{b} = \mathfrak{a}$. If not, there would be some $f \in \mathfrak{a} - \mathfrak{b}$. But then (\mathfrak{b}, f) is also a finitely generated subideal of \mathfrak{a} , contradicting the maximality of \mathfrak{b} .

A ring which satisfies these hypotheses is called noetherian.

Lemma A quotient of a noetherian ring is noetherian.

Proof Suppose *R* is noetherian, and consider *R*/*I*. Given $\overline{J} \subset R/I$, let f_1, \dots, f_r generate $J = \pi^{-1}(\overline{J})$; then $\overline{f}_1, \dots, \overline{f}_r$ generate *J*.

Lemma A ring *R* is noetherian if and only if R[T] is noetherian.

Sketch Suppose R[T] is noetherian. Then so is $R[T]/(T) \cong R$. Conversely, let R be noetherian, and $I \subset R[T]$ an ideal. We need to show that I is finitely generated.

Recall that a polynomial $f(T) \in R[T]$ can be written as

$$f(T) = \sum_{i=0}^{d} a_i T^i$$

1

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006 where $a_i \in R$ and $a_d \neq 0$. Then deg(f) = d, and the leading coefficient of f is lc $(f) = a_d$. Let $J = lc(I) = {lc(f) : f \in I}$. Show:

- 1. *J* is an ideal of *R*.
- 2. Since *R* is noetherian, $J = (lc(f_1), \dots, lc(f_r))$ for some $f_1, \dots, f_r \in I$. Now that that $I = (f_1, \dots, f_r)$.

Corollary Let *k* be a field. Then any ideal in $k[x_1, \dots, x_n]$ is finitely generated. This means that any affine algebraic set is carved out by finitely many equations.

Definition The Krull dimension of a ring R is the length of a largest chain of (proper) prime ideals; dim $R \ge n$ if and only if there are prime ideals $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \smile \mathfrak{p}_n$. This dimension does what you think it does $-\dim k[x_1, \cdots, x_n] = n$ - but the proof is not obvious.

0.2 Nullstellensatz

We've indicated before that maximal ideals correspond to points, at least on the circle. This is a special case of a more general theorem, called the Nullstellensatz.

Lemma $A \subseteq B \subseteq C$ rings, A noetherian, C finitely generated as A-algebra, C finitely generated as a B-module. Then B is finitely generated as an A-algebra.

Proof Let x_1, \dots, x_m generate C as A-algebra; we write $C = A[x_1, \dots, x_m]$, even though these elements may not be independent, so C is not necessarily a ring of polynomials over A.

Let y_1, \dots, y_n generate *C* as *B*-module, so that any element of *C* can be written as $\sum b_i y_i, b_i \in B$. In particular, we can write

$$x_i = \sum_j b_{ij} y_j$$
$$y_i y_j = \sum_k b_{ijk} y_k$$

for some b_{ij} , b_{ijk} in B.

Let B_0 be the algebra, $A \subseteq B_0 \subseteq B$, generated over A by the b_{ij} and b_{ijk} . Then B_0 is noetherian.

Recall that $C = A[x_1, \dots, x_m]$. Repeated use of the equations above means that each element of C is a B₀-linear combination of the elements y_1, \dots, y_m . Therefore, C is a finitely generated B₀-module. Then – black box this – since B₀ is noetherian, and B is a submodule of C, it follows that B is a finitely generated B₀-module.

2

Since B₀ *finitely generated as A-algebra, B is finitely generated as A-algebra.*

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006

Lecture 3

Zariski's lemma Let *k* be a field, K/k a field which is finitely generated as a *k*-algebra. Then *K* is a finite, algebraic extension of *k*.

Proof Choose a minimal set of generators for *K* as *k*-algebra, so that $K = k[x_1, \dots, x_n]$. Suppose there's at least one element of *K* which is not algebraic. Reorder the variables so that x_1, \dots, x_r are algebraically independent over *k*, and x_{r+1}, \dots, x_n are algebraic over $F := k(x_1, \dots, x_r)$. Then *K* is a finite algebraic extension of *F*, thus a finite *F*-module. Apply previous lemma; then *F* is a finitely generated *k*-algebra, say $F = k[y_1, \dots, y_s]$. Can write $y_j = f_j/g_j, f_j, g_j \in k[x_1, \dots, x_r]$.

Choose an irreducible polynomial *h* which is prime to each of the g_j , e.g., any factor of $g_1 \cdots g_s + 1$. Then $1/h \notin k[y_1, \cdots, y_s]$, since the "denominators" of 1/h are relatively prime to the g_j . But *F* is a field, thus this is a contradiction. Therefore, *K* is algebraic over *k*, thus finite algebraic.

Nullstellensatz *k* algebraically closed, $R = k[x_1, \dots, x_n]$. Then:

- a. Every maximal ideal $\mathfrak{m} \subset R$ is of the form $\mathfrak{m} = (x_1 a_1, \cdots, x_n a_n) = \mathfrak{m}_P$ for some $P \in \mathbb{A}_k^n$.
- b. If $J \subsetneq R$ is a proper ideal, then $\mathcal{Z}(J) \neq \emptyset$.
- c. For every ideal $J \subset R$,

$$\mathcal{I}(\mathcal{Z}(J)) = \sqrt{J}.$$

Proof If $P = (a_1, \dots, a_n) \in \mathbb{A}^n$, get a map

$$k[x_1, \cdots, x_n] \xrightarrow{\operatorname{eval}_P} k$$
$$f \longmapsto f(a_1, \cdots, a_n)$$

Emphasize this: $f(P) = \text{eval}_P(f)$, and $f \in \mathcal{I}(P)$ if and only if $f \in \text{ker eval}_P$.

Then ker eval_{*P*} is clearly maximal, and in fact ker eval_{*P*} = \mathfrak{m}_P as defined above. (To see this, use the change of coordinates $R = k[x_1 - a_1, \dots, x_n - a_n]$; then eval_{*P*} sends *f* to its constant term, and the kernel is everything divisible by some $(x_i - a_i)$.)

Now suppose $\mathfrak{m} \subset R$ is any maximal ideal. Write $\pi : R \to R/\mathfrak{m}$ for the projection. Then

$$K:=k[x_1,\cdots,x_m]/\mathfrak{m}$$

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006

3

is a field, finitely generated over *K*, thus algebraic. Since *k* is algebraically closed, $k \cong K$, and we have

$$k \longrightarrow k[x_1, \cdots, x_n] \xrightarrow{\pi} \frac{k[x_1, \cdots, x_n]}{\mathfrak{m}} \longrightarrow k$$
$$x_i \longmapsto b_i$$
$$a_i \longmapsto b_i$$

Let b_i be the image of x_i , and let a_i be the preimage of b_i in k. Then for each i, $x_i - a_i \in \ker \pi$, so $\mathfrak{m}_{(a_1,\dots,a_n)} \subseteq \ker \pi$. Since we already know that's maximal, this forces $\mathfrak{m} = \mathfrak{m}_{(a_1,\dots,a_n)}$.

(b) Suppose $J \subset R$ is any proper ideal. Since R is noetherian, $J \subseteq \mathfrak{m}$ for some maximal ideal \mathfrak{m} . Then $\mathfrak{m} = \mathfrak{m}_P$ for some P, and $\{P\} = \mathcal{Z}(\mathfrak{m}_P) \subset \mathcal{Z}(J)$.

(c) Given $J \subset A$, let $V = \mathcal{Z}(J)$. We want to show that $\mathcal{I}(V) = \sqrt{J}$. Clearly, $\sqrt{J} \subseteq \mathcal{I}(V)$. Indeed, if $P \in V$, and $f \in \sqrt{J}$, then there's some N so that $f^N \in J$. Then $f(P)^N = f^N(P) = 0$, so f(P) = 0.

Conversely, suppose that $f \notin \sqrt{J}$; we'll show that $f \notin \mathcal{I}(V)$. If $f \notin \sqrt{J}$, then "there is some prime divisor of *J* which doesn't divide *f*". Concretely, there's some prime ideal \mathfrak{p} such that $\mathfrak{p} \supseteq J$ but $f \notin \mathfrak{p}$. (If *f* were contained in every prime ideal which contains *J*, then *f* would be in the radical of *J*.)

Define $B = R/\mathfrak{p}$. Let \overline{f} be the image of f in R/\mathfrak{p} . It's nonzero, thus not a zero divisor, so we can invert. Let $C = B[1/\overline{f}]$. Then C is a finitely generated k-algebra. Now choose a maximal ideal $\mathfrak{m} \subset C$. Since \overline{f} is a unit in $C, \overline{f} \notin \mathfrak{m}$. (This property itself will be useful later...) Then C/\mathfrak{m} is a field, finitely generated over k, thus isomorphic to k: and the image of \overline{f} in C is nonzero.

Now consider

$$k[x_1, \cdots, x_n] \longrightarrow B = \left(\frac{k[x_1, \cdots, x_n]}{\mathfrak{p}}\right) \longrightarrow B[1/\overline{f}] \longrightarrow C/\mathfrak{m} \cong k$$
$$x_i \longmapsto a_i$$

Then consider the point $P = (a_1, \dots, a_n)$. On one hand, $P \in \mathcal{Z}(J)$, since its maximal ideal contains *J*. On the other hand, $f(P) \neq 0$, since under the "evaluation at P" map it is not sent to zero. \Box

Corollary There is a one-to-one inclusion-reversing correspondence between algebraic sets in \mathbb{A}^n and radical ideals of *R*.

4

Professor Jeff Achter Colorado State University M672: Algebraic geometry Fall 2006