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0.1 Noetherian rings and the Hilbert Basis Theorem

Definition A ring R is noetherian if it satisfies the ascending chain condition, namely, that every
ascending chain of ideals is eventually stationary.

Concretely, given a chain of ideals a1 ⊆ a2 ⊆ · · · ⊆ an, there exists some m such that am = am+1 =
· · · .

Lemma Let R be a ring. The following are equivalent.

• Every ideal of R is finitely generated.

• R satisfies ACC

• Every nonempty collection of ideals {ai : i ∈ I} has a maximal element.

Proof Suppose every ideal of R is finitely generated. Let a1 ⊆ a2 ⊆ · · · be an ascending chain of ideals. Let
a = ∪ai. It’s an ideal of R. By hypothesis, a = ( f1, · · · , fr) for r elements of a. For each i, 1 ≤ i ≤ r, there’s an ni so
that fi ∈ ani . Let n = max ni. Then f1, · · · , fr ∈ an, so that a ⊆ an ⊆ an+1 ⊆ · · · a; the chain is stationary at n.

Suppose R satisfies the ACC. Take i1 ∈ I , and iterate the following. Suppose i1, · · · , i j have been chosen. If ai j is
maximal, stop. Otherwise, there is some ai j+1 which properly contains it. So, consider the chain ai1 ⊂ ai2 ⊂. It’s
ascending, thus eventually stationary, and some aim is maximal.

Finally, suppose every nonempty collection of ideals has a maximal element. Let a be any ideal. Consider the set S of
all subideals of a which are finitely generated. It has a maximal element, b. I claim that b = a. If not, there would be
some f ∈ a− b. But then (b, f ) is also a finitely generated subideal of a, contradicting the maximality of b.

A ring which satisfies these hypotheses is called noetherian.

Lemma A quotient of a noetherian ring is noetherian.

Proof Suppose R is noetherian, and consider R/I. Given J ⊂ R/I, let f1, · · · , fr generate J =
π−1(J); then f 1, · · · , f r generate J.

Lemma A ring R is noetherian if and only if R[T] is noetherian.

Sketch Suppose R[T] is noetherian. Then so is R[T]/(T) ∼= R. Conversely, let R be noetherian,
and I ⊂ R[T] an ideal. We need to show that I is finitely generated.

Recall that a polynomial f (T) ∈ R[T] can be written as

f (T) =
d

∑
i=0

aiTi
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where ai ∈ R and ad 6= 0. Then deg( f ) = d, and the leading coefficient of f is lc( f ) = ad.

Let J = lc(I) = {lc( f ) : f ∈ I}. Show:

1. J is an ideal of R.

2. Since R is noetherian, J = (lc( f1), · · · , lc( fr)) for some f1, · · · , fr ∈ I. Now that that I =
( f1, · · · , fr).

Corollary Let k be a field. Then any ideal in k[x1, · · · , xn] is finitely generated.

This means that any affine algebraic set is carved out by finitely many equations.

Definition The Krull dimension of a ring R is the length of a largest chain of (proper) prime ideals; dim R ≥ n if
and only if there are prime ideals p0 ( p1 ( · · · ⊂ pn.

This dimension does what you think it does – dim k[x1, · · · , xn] = n – but the proof is not obvious.

0.2 Nullstellensatz
Lecture 3

We’ve indicated before that maximal ideals correspond to points, at least on the circle. This is a
special case of a more general theorem, called the Nullstellensatz.

Lemma A ⊆ B ⊆ C rings, A noetherian, C finitely generated as A-algebra, C finitely generated
as a B-module. Then B is finitely generated as an A-algebra.

Proof Let x1, · · · , xm generate C as A-algebra; we write C = A[x1, · · · , xm], even though these elements may not
be independent, so C is not necessarily a ring of polynomials over A.

Let y1, · · · , yn generate C as B-module, so that any element of C can be written as ∑ bi yi, bi ∈ B.

In particular, we can write

xi = ∑
j

bi j y j

yi y j = ∑
k

bi jk yk

for some bi j, bi jk in B.

Let B0 be the algebra, A ⊆ B0 ⊆ B, generated over A by the bi j and bi jk. Then B0 is noetherian.

Recall that C = A[x1, · · · , xm]. Repeated use of the equations above means that each element of C is a B0-linear
combination of the elements y1, · · · , ym. Therefore, C is a finitely generated B0-module. Then – black box this – since
B0 is noetherian, and B is a submodule of C, it follows that B is a finitely generated B0-module.

Since B0 finitely generated as A-algebra, B is finitely generated as A-algebra.

Professor Jeff Achter
Colorado State University

2 M672: Algebraic geometry
Fall 2006



August 25, 2006

Zariski’s lemma Let k be a field, K/k a field which is finitely generated as a k-algebra. Then K is
a finite, algebraic extension of k.

Proof Choose a minimal set of generators for K as k-algebra, so that K = k[x1, · · · , xn]. Suppose
there’s at least one element of K which is not algebraic. Reorder the variables so that x1, · · · , xr
are algebraically independent over k, and xr+1, · · · , xn are algebraic over F := k(x1, · · · , xr). Then
K is a finite algebraic extension of F, thus a finite F-module. Apply previous lemma; then F is a
finitely generated k-algebra, say F = k[y1, · · · , ys]. Can write y j = f j/g j, f j, g j ∈ k[x1, · · · , xr].

Choose an irreducible polynomial h which is prime to each of the g j, e.g., any factor of g1 · · · gs + 1.
Then 1/h 6∈ k[y1, · · · , ys], since the “denominators” of 1/h are relatively prime to the g j. But F is
a field, thus this is a contradiction. Therefore, K is algebraic over k, thus finite algebraic.

Nullstellensatz k algebraically closed, R = k[x1, · · · , xn]. Then:

a. Every maximal ideal m ⊂ R is of the form m = (x1 − a1, · · · , xn − an) = mP for some P ∈ An
k .

b. If J ( R is a proper ideal, then Z(J) 6= ∅.

c. For every ideal J ⊂ R,
I(Z(J)) =

√
J.

Proof If P = (a1, · · · , an) ∈ An, get a map

k[x1, · · · , xn]
evalP - k

f - f (a1, · · · , an)

Emphasize this: f (P) = evalP( f ), and f ∈ I(P) if and only if f ∈ ker evalP.

Then ker evalP is clearly maximal, and in fact ker evalP = mP as defined above. (To see this, use
the change of coordinates R = k[x1 − a1, · · · , xn − an]; then evalP sends f to its constant term, and
the kernel is everything divisible by some (xi − ai).)

Now suppose m ⊂ R is any maximal ideal. Write π : R → R/m for the projection. Then

K := k[x1, · · · , xm]/m
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is a field, finitely generated over K, thus algebraic. Since k is algebraically closed, k ∼= K, and we
have

k - k[x1, · · · , xn]
π
- k[x1, · · · , xn]

m
- k

xi - bi

ai - bi

Let bi be the image of xi, and let ai be the preimage of bi in k. Then for each i, xi − ai ∈ ker π , so
m(a1 ,··· ,an) ⊆ ker π . Since we already know that’s maximal, this forces m = m(a1 ,··· ,an).

(b) Suppose J ⊂ R is any proper ideal. Since R is noetherian, J ⊆ m for some maximal ideal m.
Then m = mP for some P, and {P} = Z(mP) ⊂ Z(J).

(c) Given J ⊂ A, let V = Z(J). We want to show that I(V) =
√

J. Clearly,
√

J ⊆ I(V). Indeed, if
P ∈ V, and f ∈

√
J, then there’ s some N so that f N ∈ J. Then f (P)N = f N(P) = 0, so f (P) = 0.

Conversely, suppose that f 6∈
√

J; we’ll show that f 6∈ I(V). If f 6∈
√

J, then “there is some prime
divisor of J which doesn’t divide f ”. Concretely, there’s some prime ideal p such that p ⊇ J but
f 6∈ p. (If f were contained in every prime ideal which contains J, then f would be in the radical
of J.)

Define B = R/p. Let f be the image of f in R/p. It’s nonzero, thus not a zero divisor, so we can
invert. Let C = B[1/ f ]. Then C is a finitely generated k-algebra. Now choose a maximal ideal
m ⊂ C. Since f is a unit in C, f 6∈ m. (This property itself will be useful later...) Then C/m is a field,
finitely generated over k, thus isomorphic to k: and the image of f in C is nonzero.

Now consider

k[x1, · · · , xn] - B = (
k[x1, · · · , xn]

p
) - B[1/ f ] - C/m ∼= k

xi - ai

Then consider the point P = (a1, · · · , an). On one hand, P ∈ Z(J), since its maximal ideal contains
J. On the other hand, f (P) 6= 0, since under the “evaluation at P” map it is not sent to zero.

Corollary There is a one-to-one inclusion-reversing correspondence between algebraic sets in An

and radical ideals of R.
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