Homework 9

Due: Friday, November 13

1. Let $\Delta(z)=\sum_{m} \tau(m) q^{m}$. Use the theory from class to (quickly) show that if $\operatorname{gcd}(m, n)=1$, then $\tau(m n)=\tau(m) \tau(n)$.
2. Recall that $\mathcal{S}_{12}=\mathcal{S}_{12}(\Gamma(1))$, the space of cusp forms of weight twenty four, has dimension two. Compute the eigenvalues of the action of T_{2} on \mathcal{S}_{12}, as follows.
(a) Write down a basis $\left\{f_{1}, f_{2}\right\}$ for \mathcal{S}_{12}.
(b) Find the first few Fourier coefficients of each f_{i} :

$$
f_{i}(z)=\sum_{0 \leq j \leq 3} c_{i}(j) q^{j}+\mathcal{O}\left(q^{4}\right) .
$$

3. (2) continued.
(a) Compute the first few Fourier coefficients of $T_{2} f_{1}$ and $T_{2} f_{2}$.
(b) Find a matrix representing the effect of T_{2} on \mathcal{S}_{12}. What are its eigenvalues?
4. The Gamma function is defined by

$$
\begin{equation*}
\Gamma(s)=\int_{0}^{\infty} \exp (-t) t^{s-1} d t \tag{1}
\end{equation*}
$$

It turns out that the right-hand side is holomorphic on $\operatorname{Re}(s)>0$; assume this.
(a) Show that, if $\operatorname{Re}(s)>0$, then $\Gamma(s+1)=s \Gamma(s)$. (HinT: Integrate by parts.)
(b) Show that $\Gamma(n+1)=n$!.
5. (4) continued. Consider the functions

$$
\begin{aligned}
& F_{1}(s)=\frac{1}{s} \Gamma(s+1) \\
& F_{2}(s)=\frac{1}{s} \frac{1}{s+1} \Gamma(s+2) \\
& F_{3}(s)=\frac{1}{s} \frac{1}{s+1} \frac{1}{s+2} \Gamma(s+3) \\
& \vdots \\
& F_{N}(s)=\frac{1}{s \cdot(s+1) \cdot(s+2) \cdots(s+N-1)} \Gamma(s+N) \\
& \vdots
\end{aligned}
$$

(a) Show that $F_{N}(s)$ is meromorphic on $\operatorname{Re}(s)>-N$.
(b) Show that if $N>M$, then F_{N} and F_{M} agree on $\operatorname{Re}(s)>-M$.
(c) Explain why $\Gamma(s)$ admits a meromorphic continuation to \mathbb{C}; it has simple poles at negative integers, and is holomorphic elsewhere.

