Homework 8

Due: Friday, November 6

1. Suppose $\alpha: \mathbb{N} \rightarrow \mathbb{C}$ is (completely) multiplicative;

$$
\alpha(m n)=\alpha(m) \alpha(n) .
$$

Suppose it grows sufficiently slowly that

$$
L(\alpha, s):=\sum_{n \geq 1} \alpha(n) n^{-s}
$$

converges on some half-plane of \mathbb{C}. Show that there is a factorization

$$
L(\alpha, s)=\prod_{p} \frac{1}{1-\alpha(p) p^{-s}}
$$

2. Now suppose that α is weakly, but not completely, multiplicative. Set

$$
L_{p}(\alpha, s)=\sum_{m \geq 0} \alpha\left(p^{m}\right) p^{-m s} .
$$

(a) Show that there is an equality

$$
\sum_{n \geq 1} \alpha(p) \alpha\left(p^{n}\right) p^{-n s}=\alpha(p)\left(L_{p}(\alpha, s)-1\right)
$$

(b) Similarly, express

$$
\sum_{n \geq 1} \alpha\left(p^{n+1}\right) p^{-n s} \text { and } \sum_{n \geq 1} p^{11} \alpha\left(p^{n-1}\right) p^{-n s}
$$

in terms of $L_{p}(\alpha, s)$.
(c) Suppose that, for each $n \geq 1$,

$$
\alpha(p) \alpha\left(p^{n}\right)=\alpha\left(p^{n+1}\right)+p^{11} \alpha\left(p^{n-1}\right)
$$

Show that

$$
L_{p}(\alpha, s)=\frac{1}{1-\alpha(p) p^{-s}+p^{11-2 s}}
$$

3. Write $1-\alpha(p) T+p^{11} T^{2}=(1-\gamma T)\left(1-\gamma^{\prime} T\right)$ for complex numbers γ, γ^{\prime}, and suppose that $\alpha(p)$ is real. Show that the following are equivalent:
(a) $|\alpha(p)| \leq 2 p^{11 / 2}$;
(b) $|\gamma|=\left|\gamma^{\prime}\right|=p^{11 / 2}$;
(c) $\gamma^{\prime}=\bar{\gamma}$.

Professor Jeff Achter
4. One (ad hoc) way of defining Hecke operators is as follows. Suppose $f \in \mathcal{M}_{k}=\mathcal{M}_{k}(\Gamma(1))$, and $m \in \mathbb{N}$. If f has Fourier expansion

$$
f(z)=\sum a_{n} q^{n}
$$

then

$$
T(m) f=m^{2 k-1} \sum_{a d=m, a, d>0} \frac{1}{d^{2 k}} \sum_{b \bmod d} f\left(\frac{a z+b}{d}\right)
$$

(a) Show that

$$
\begin{aligned}
T(m) f & =\sum_{d \mid m, d>0}(m / d)^{2 k-1} \sum_{n \geq 0, d \mid n} a_{n} q^{m n / d^{2}} \\
& =\sum_{n \geq 0}\left(\sum_{r \mid(m, n), r>0} r^{2 k-1} a_{m n / r^{2}}\right) q^{n} .
\end{aligned}
$$

(b) Conclude that for all m and $n, T(m) T(n)=T(n) T(m)$.
5. Use the previous problem to show that, for each m,

$$
T(m) \Delta=\tau(m) \Delta .
$$

