Homework 7

Due: Friday, October 23

The first three problems sketch another derivation of the series expansion for

$$
\begin{aligned}
g(z) & =\pi \cot (\pi z) \\
& =\pi i \frac{\exp (2 \pi i z)+1}{\exp (2 \pi i z)-1} .
\end{aligned}
$$

Let

$$
\begin{aligned}
f(z) & =\lim _{N \rightarrow \infty} \sum_{|n| \leq N} \frac{1}{z-n} \\
& =\frac{1}{z}+\sum_{1 \leq n \leq N}\left(\frac{1}{z-n}+\frac{1}{z+n}\right) \\
& =\frac{1}{z}+\sum_{n \geq 1} \frac{2 z}{z^{2}-n^{2}} .
\end{aligned}
$$

The sum is absolutely convergent on compact sets, and $f(z)$ is defined away from \mathbb{Z}.

1. Prove the following facts about $f(z)$.
(a) If $z \notin \mathbb{Z}$, then $f(z)=f(z+1)$.
(b) $f(z)=\frac{1}{z}+f_{0}(z)$, where $f_{0}(z)$ is analytic near 0 .
(c) $f(z)$ has simple poles at the integers, and no other singularities.
2. Prove the following facts about $g(z)$.
(a) If $z \notin \mathbb{Z}$, then $g(z)=g(z+1)$.
(b) $g(z)=\frac{1}{z}+g_{0}(z)$, where $g_{0}(z)$ is analytic near 0 .
(c) $g(z)$ has simple poles at the integers, and no other singularities.
3. Consider the difference function

$$
h(z)=g(z)-f(z) .
$$

(a) Show that $h(z)$ is entire, i.e., holomorphic on C .
(b) One can show that $f(z)$ is bounded on

$$
S=\left\{z \in \mathbb{C}:|\operatorname{Re}(z)| \leq \frac{1}{2} \text { and }|\operatorname{Im}(z)|>1\right\}
$$

Explain how to conclude that $h(z)$ is constant.
4. Show that, for $k \geq 2$,

$$
\begin{equation*}
\sum_{m \in \mathbb{Z}} \frac{1}{(m+z)^{k}}=\frac{1}{(k-1)!}(-2 i \pi)^{k} \sum_{n \geq 1} n^{k-1} q^{n} \tag{1}
\end{equation*}
$$

where $q(z)=\exp (2 \pi i z)$. (Hint: Start with two different expansions for $\pi \cot (\pi z)$, and take derivatives.)
5. Use (1) to show that, for $k \geq 2$,

$$
G_{k}(z)=2 \zeta(2 k)+2 \frac{(2 i \pi)^{2 k}}{(2 k-1)!} \sum_{n \geq 1} \sigma_{2 k-1}(n) q^{n}
$$

where $q=\exp (2 \pi i z)$ and, for a natural number N and a nonnegative integer r,

$$
\sigma_{r}(N)=\sum_{d \mid N} d^{r}
$$

6. For $k \geq 2$, let

$$
\begin{align*}
E_{k}(z) & =\frac{G_{k}(z)}{2 \zeta(2 k)} \tag{2}\\
& =1+\gamma_{k} \sum_{n \geq 1} \sigma_{2 k-1}(n) q^{n} \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
\gamma_{k}=(-1)^{k} \frac{4 k}{B_{k}} \tag{4}
\end{equation*}
$$

(a) Compute γ_{k} for $2 \leq k \leq 8$ (use any method or tool you like).
(b) Show that there are identities of modular forms

$$
\begin{aligned}
E_{2}^{2} & =E_{4} \\
E_{2} E_{3} & =E_{5}
\end{aligned}
$$

(HINT: $\operatorname{dim} \mathcal{M}_{4}=\operatorname{dim} \mathcal{M}_{5}=1$.)
7. Show that, for each n,

$$
\begin{aligned}
\sigma_{7}(n) & =\sigma_{3}(n)+120 \sum_{m=1}^{n-1} \sigma_{3}(m) \sigma_{3}(n-m) \\
11 \sigma_{9}(n) & =21 \sigma_{5}(n)-10 \sigma_{3}(n)+5040 \sum_{m=1}^{n-1} \sigma_{3}(n) \sigma_{5}(n-m) .
\end{aligned}
$$

