Homework 6

Due: Friday, October 16

The first half is easy; the second half will only make sense after class on Monday.

1. For a positive integer N, we defined

$$
\begin{aligned}
Y_{N}=\{ & (E, P, Q): E / C \text { an elliptic curve } \\
& \{P, Q\} \text { a basis for } E[N] \\
& \left.e_{N}(P, Q)=\exp (2 \pi i / N)\right\}
\end{aligned}
$$

and a map

$$
\begin{aligned}
& \mathbb{H} \longrightarrow Y_{N} \\
& \tau \longmapsto\left(E_{\tau}, \frac{\tau}{N}, \frac{1}{N}\right)
\end{aligned}
$$

which yielded a bijection $Y(\Gamma(N)) \xrightarrow{\sim} Y_{N}$.
Find a map ϕ which makes the following diagram commute; prove your answer is correct.

2. Recall that we have defined:

$$
G_{k}(\tau)=f_{2 k}\left(\Lambda_{\tau}\right)
$$

where

$$
\begin{array}{ll}
f_{k}(\Lambda)=\sum \lambda \in \Lambda \backslash\{0\} \frac{1}{\lambda^{k}} ; g_{2}(\tau) & =60 G_{2}(\tau) \\
g_{3}(\tau)=140 G_{3}(\tau) &
\end{array}
$$

Quickly explain why:
(a) $f_{k}(\tau)$ is identically zero if k is odd;
(b) If $i \Lambda_{\tau}=\Lambda_{\tau}$, then $g_{3}(\tau)=0$.
(c) If $\rho \Lambda_{\tau}=\Lambda_{\rho}$, then $g_{2}(\tau)=0$. (Here, $\rho=\exp (2 \pi i / 3)$.)
3. Let f be a meromorphic modular form of weight $2 k$ for $\Gamma(1)$. Show that

$$
\operatorname{ord}_{i \infty}(f)+\frac{1}{2} \operatorname{ord}_{i}(f)+\frac{1}{3} \operatorname{ord}_{\rho}(f)+\sum_{Q} \operatorname{ord}_{Q}(f)=\frac{k}{6}
$$

where the sum is over all Q in our (open) fundamental domain. (Hint: Just specialize our general result on zeros of modular forms.)
4. (a) G_{2} has a simple zero at $z=\rho$, and no others.
(b) G_{3} has a simple zero at $z=i$, and no others.
(c) Δ has a simple zero at ∞.
5. Let $\mathcal{M}_{k}=\mathcal{M}_{k}(\Gamma(1))$ be the space of holomorphic modular forms of weight $2 k$, and let $\mathcal{S}_{k}=\mathcal{S}_{k}(\Gamma(1)) \subseteq \mathcal{M}_{k}$ be the space of cuspidal holomorphic modular forms; by definition, \mathcal{S}_{k} is the kernel of the map

$$
\begin{gathered}
\mathcal{M}_{k} \longrightarrow C \\
f \longmapsto f(i \infty) .
\end{gathered}
$$

(a) For $1 \leq k \leq 5$, show that G_{k} is a basis for \mathcal{M}_{k}, and that $\mathcal{S}_{k}=0$.
(b) For any k, show that multiplication by Δ gives an isomorphism

$$
\begin{gathered}
\mathcal{M}_{k} \longrightarrow \mathcal{S}_{k+6} \\
f \longmapsto \Delta f
\end{gathered}
$$

As a consequence of study of modular forms we will find that, for a positive integer k,

$$
\#\left\{a, b \in \mathbb{Z}_{\geq 0}: 2 a+3 b=k\right\}=\left\{\begin{array}{ll}
\lfloor k / 6\rfloor & k \equiv 1 \bmod 6 \\
\lfloor k / 6\rfloor+1 & k \not \equiv 1 \bmod 6
\end{array} .\right.
$$

Feel free to prove this directly, if you're so inclined.

