Homework 6 Due: Friday, October 16

The first half is easy; the second half will only make sense after class on Monday.

1. For a positive integer *N*, we defined

$$Y_N = \{(E, P, Q) : E/\mathbb{C} \text{ an elliptic curve} \\ \{P, Q\} \text{ a basis for } E[N] \\ e_N(P, Q) = \exp(2\pi i/N)\}$$

and a map

$$\mathbb{H} \longrightarrow Y_N$$
$$\tau \longmapsto (E_{\tau}, \frac{\tau}{N}, \frac{1}{N})$$

which yielded a bijection $Y(\Gamma(N)) \xrightarrow{\sim} Y_N$.

Find a map ϕ which makes the following diagram commute; prove your answer is correct.

2. Recall that we have defined:

$$G_k(\tau) = f_{2k}(\Lambda_{\tau})$$

where

$$f_k(\Lambda) = \sum \lambda \in \Lambda \smallsetminus \{0\} \frac{1}{\lambda^k}; g_2(\tau) = 60G_2(\tau)$$
$$g_3(\tau) = 140G_3(\tau)$$

Quickly explain why:

- (a) $f_k(\tau)$ is identically zero if *k* is odd;
- (b) If $i\Lambda_{\tau} = \Lambda_{\tau}$, then $g_3(\tau) = 0$.
- (c) If $\rho \Lambda_{\tau} = \Lambda_{\rho}$, then $g_2(\tau) = 0$. (Here, $\rho = \exp(2\pi i/3)$.)

Professor Jeff Achter Colorado State University Math 619: Complex Variables II Fall 2015 3. Let *f* be a meromorphic modular form of weight 2k for $\Gamma(1)$. Show that

$$\operatorname{ord}_{i\infty}(f) + \frac{1}{2}\operatorname{ord}_{i}(f) + \frac{1}{3}\operatorname{ord}_{\rho}(f) + \sum_{Q}\operatorname{ord}_{Q}(f) = \frac{k}{6},$$

where the sum is over all *Q* in our (open) fundamental domain. (HINT: *Just specialize our general result on zeros of modular forms.*)

- 4. (a) G_2 has a simple zero at $z = \rho$, and no others.
 - (b) G_3 has a simple zero at z = i, and no others.
 - (c) Δ has a simple zero at ∞ .
- 5. Let $\mathcal{M}_k = \mathcal{M}_k(\Gamma(1))$ be the space of holomorphic modular forms of weight 2k, and let $\mathcal{S}_k = \mathcal{S}_k(\Gamma(1)) \subseteq \mathcal{M}_k$ be the space of cuspidal holomorphic modular forms; by definition, \mathcal{S}_k is the kernel of the map

$$\mathcal{M}_k \longrightarrow \mathbb{C}$$
$$f \longmapsto f(i\infty).$$

- (a) For $1 \le k \le 5$, show that G_k is a basis for \mathcal{M}_k , and that $\mathcal{S}_k = 0$.
- (b) For any *k*, show that multiplication by Δ gives an isomorphism

$$\mathcal{M}_k \longrightarrow \mathcal{S}_{k+6}$$
$$f \longmapsto \Delta f$$

As a consequence of study of modular forms we will find that, for a positive integer *k*,

$$#\{a, b \in \mathbb{Z}_{\geq 0} : 2a + 3b = k\} = \begin{cases} \lfloor k/6 \rfloor & k \equiv 1 \mod 6\\ \lfloor k/6 \rfloor + 1 & k \not\equiv 1 \mod 6 \end{cases}$$

Feel free to prove this directly, if you're so inclined.

Professor Jeff Achter Colorado State University