Homework 5 Due: Friday, October 9

The first two questions are very easy, but useful.

- 1. Prove the following two trivial, but useful, observations:
 - (a) Show there are no nonconstant modular forms for $SL_2(\mathbb{Z})$ of odd weight.
 - (b) If Γ ⊂ Γ(1), the width of the cusp at ∞ is the smallest *n* such that Tⁿ ∈ Γ.
 If α is any other cusp, its *width* is the smallest *n* such that Tⁿ ∈ δ⁻¹Γδ, where δ ∈ Γ(1) satisfies δα = ∞.
 Suppose Γ is normal in Γ(1). Show that all cusps have the same width.
- 2. Fix an integer $N \ge 2$, and consider $\Gamma(N)$; let $\overline{\Gamma}(N)$ be its image mod \pm id. Note that $\Gamma(N)$ is normal in $\Gamma(1)$.
 - (a) Show that $\Gamma(N)$ has no elliptic points in \mathbb{H} . (HINT: For $\overline{\Gamma}(1) = \text{PSL}_2(\mathbb{Z})$, any elliptic point has stabilizer conjugate to either $\langle S \rangle$ or $\langle ST \rangle$.)
 - (b) Compute the width of the cusp at ∞ .
- 3. Continuation of previous problem.
 - (a) Suppose a group *G* acts transitively on a set *X*. Let $H \subseteq G$ be a normal subgroup of finite index. Let $x_0 \in X$ be any point. Show that the number of orbits of *H*, acting on *X*, is

$$\frac{[G:H]}{[\operatorname{Stab}_G(x_0):\operatorname{Stab}_H(x_0)]}.$$

- (b) Compute the number of cusps for $\Gamma(N)$.
- (c) Give a formula for the genus of the modular curve X(N). (HINT: Use the theorem from class: Let $d_N = [\overline{\Gamma}(1) : \overline{\Gamma}]$. Let v_{∞} be the number of inequivalent cusps; let v_2 be the number of inequivalent elliptic points of order 2; let v_3 be the number of inequivalent elliptic points of order 3. Then the genus of $X(\Gamma)$ is

$$1 + \frac{d}{12} - \frac{1}{4}\nu_2 - \frac{1}{3}\nu_3 - \frac{1}{2}\nu_{\infty}.$$

.)

- 4. Let $\Gamma \subset \Gamma(1)$ have finite index. Let $\omega = f(\tau)d\tau$ be a meromorphic differential on \mathbb{H} .
 - (a) Suppose $\gamma \in \Gamma \subset \Gamma(1)$. Calculate $\gamma^* \omega$.
 - (b) Show that ω is invariant under Γ if and only if *f* is a meromorphic modular form of weight 2.

Professor Jeff Achter Colorado State University Math 619: Complex Variables II Fall 2015 5. A *k*-fold differential on a Riemann surface is given locally by an expression of the form

$$\omega = f(z) \cdot (dz)^k;$$

it transforms as

$$g^*\omega = g^*f(dg(z))^k$$
$$f(g(z))g'(z)^k(dz)^k.$$

Verify that meromorphic modular forms of weight 2k for Γ correspond to meromorphic *k*-fold differentials on $\Gamma \setminus \mathbb{H}$.

In fact, they are meromorphic at the cusps, and actually correspond to forms on $\Gamma \setminus \mathbb{H}^*$.