Homework 5

Due: Friday, October 9

The first two questions are very easy, but useful.

1. Prove the following two trivial, but useful, observations:
(a) Show there are no nonconstant modular forms for $\mathrm{SL}_{2}(\mathbb{Z})$ of odd weight.
(b) If $\Gamma \subset \Gamma(1)$, the width of the cusp at ∞ is the smallest n such that $T^{n} \in \Gamma$.

If α is any other cusp, its width is the smallest n such that $T^{n} \in \delta^{-1} \Gamma \delta$, where $\delta \in \Gamma(1)$ satisfies $\delta \alpha=\infty$.
Suppose Γ is normal in $\Gamma(1)$. Show that all cusps have the same width.
2. Fix an integer $N \geq 2$, and consider $\Gamma(N)$; let $\bar{\Gamma}(N)$ be its image $\bmod \pm$ id. Note that $\Gamma(N)$ is normal in $\Gamma(1)$.
(a) Show that $\Gamma(N)$ has no elliptic points in \mathbb{H}. (Hint: For $\bar{\Gamma}(1)=\operatorname{PSL}_{2}(\mathbb{Z})$, any elliptic point has stabilizer conjugate to either $\langle S\rangle$ or $\langle S T\rangle$.)
(b) Compute the width of the cusp at ∞.
3. Continuation of previous problem.
(a) Suppose a group G acts transitively on a set X. Let $H \subseteq G$ be a normal subgroup of finite index. Let $x_{0} \in X$ be any point. Show that the number of orbits of H, acting on X, is

$$
\frac{[G: H]}{\left[\operatorname{Stab}_{G}\left(x_{0}\right): \operatorname{Stab}_{H}\left(x_{0}\right)\right]} .
$$

(b) Compute the number of cusps for $\Gamma(N)$.
(c) Give a formula for the genus of the modular curve $X(N)$. (Hint: Use the theorem from class: Let $d_{N}=[\bar{\Gamma}(1): \bar{\Gamma}]$. Let v_{∞} be the number of inequivalent cusps; let v_{2} be the number of inequivalent elliptic points of order 2; let v_{3} be the number of inequivalent elliptic points of order 3. Then the genus of $X(\Gamma)$ is

$$
1+\frac{d}{12}-\frac{1}{4} v_{2}-\frac{1}{3} v_{3}-\frac{1}{2} v_{\infty} .
$$

.)
4. Let $\Gamma \subset \Gamma(1)$ have finite index. Let $\omega=f(\tau) d \tau$ be a meromorphic differential on \mathbb{H}.
(a) Suppose $\gamma \in \Gamma \subset \Gamma(1)$. Calculate $\gamma^{*} \omega$.
(b) Show that ω is invariant under Γ if and only if f is a meromorphic modular form of weight 2.

Professor Jeff Achter
Math 619: Complex Variables II
Colorado State University
5. A k-fold differential on a Riemann surface is given locally by an expression of the form

$$
\omega=f(z) \cdot(d z)^{k}
$$

it transforms as

$$
\begin{aligned}
& g^{*} \omega=g^{*} f(d g(z))^{k} \\
& f(g(z)) g^{\prime}(z)^{k}(d z)^{k}
\end{aligned}
$$

Verify that meromorphic modular forms of weight $2 k$ for Γ correspond to meromorphic k fold differentials on $\Gamma \backslash \mathbb{H}$.
In fact, they are meromorphic at the cusps, and actually correspond to forms on $\Gamma \backslash \mathbb{H}^{*}$.

