Homework 4

Due: Friday, October 2

1. Let $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, and $\Gamma^{\prime}=\langle S, T\rangle$. The goal of this problem is to give an alternate proof that, setting $\Gamma^{\prime}=\langle S, T\rangle$, we have $\Gamma^{\prime}=\mathrm{SL}_{2}(\mathbb{Z})$.
Suppose $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$.
For a matrix A, let $A_{i j}$ denote the entry in row i, column j.
(a) Suppose $c=0$. Show that $\gamma \in \Gamma^{\prime}$.

Henceforth, assume $c \neq 0$.
(b) Show that we may assume $\left|\gamma_{11}\right| \geq\left|\gamma_{12}\right|$.
(c) Show there exists some q such that

$$
\left|\left(T^{-q} \gamma\right)_{11}\right| \leq\left|\left(T^{-q} \gamma\right)_{21}\right|
$$

(Hint: Write $a=c q+r, 0 \leq r<|c|$.)
(d) Iterate.
2. Let X and Y be compact Riemann surfaces, and let $\phi: X \rightarrow Y$ be a nonconstant holomorphic map. If $P \in X$, the multiplicity of ϕ at P may be defined as follows: Let w be a local coordinate on X centered at P (so that $w(P)=0$), and let z be a local coordinate on Y centered at Q. Locally, ϕ is given by a function $z=f(w)$; then $\mu_{P}(\phi)=\operatorname{ord}_{w=0} f$.
Consider the local meromorphic differential $d z$ on Y. Calculate

$$
\operatorname{ord}_{P} f^{*} d z
$$

your answer should be in terms of $\mu_{P}(\phi)$.
(Hint: By HW3, you can choose local coordinates so that ϕ is given by

$$
z=w^{\mu_{P}(\phi)} .
$$

)
3. If $\phi: X \rightarrow Y$ is a nonconstant holomorphic map of compact Riemann surfaces, there is an induced map

$$
\operatorname{Div}(Y) \xrightarrow{\phi^{*}} \operatorname{Div}(X)
$$

where

$$
\phi^{*} Q=\sum_{P \in \phi^{-1}(Q)} \mu_{P}(\phi) P
$$

and we extend by linearity:

$$
\phi^{*}\left(\sum_{Q} n_{Q} Q\right)=\sum_{Q} n_{Q} \phi^{*} Q .
$$

It turns out that, if $\operatorname{deg} \phi=d$, then for each $Q \in Y$ we have

$$
\operatorname{deg}\left(\phi^{*} Q\right)=d
$$

(a) Now suppose that ω is a nonconstant meromorphic differential on Y, with no zero or pole in the branch locus of ϕ. Show that

$$
\operatorname{deg}\left(\phi^{*} \omega\right)=d \operatorname{deg}(\omega)+\sum_{P \in X}\left(\mu_{P}(\phi)-1\right)
$$

(b) Deduce the Riemann-Hurwitz formula. (HINT: Remember that if Z is a compact Riemann surface and if ω_{Z} is a nonconstant meromorphic differential, then $\operatorname{deg}\left(\omega_{Z}\right)=2 g_{Z}-2$.)
4. Recall that

$$
\begin{aligned}
\Gamma(1) & =\mathrm{SL}_{2}(\mathbb{Z}) \\
\Gamma(N) & =\operatorname{ker}\left(\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N)\right)
\end{aligned}
$$

Give an explicit formula for the index

$$
[\Gamma(1): \Gamma(N)] .
$$

If you like, you may proceed as follows.
(a) Explain why it suffices to calculate $\# \mathrm{GL}_{2}(\mathbb{Z} / N)$.
(b) Explain why it suffices to calculate, for a prime $\ell, \# \mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{r}\right)$.
(c) Explain how to quickly calculate $\# g l_{2}\left(\mathbb{Z} / \ell^{r}\right)$ in terms of $\# \mathrm{GL}_{2}(\mathbb{Z} / \ell)$
(d) Calculate $\# g l_{2}(\mathbb{Z} / \ell)$.
(e) Conclude with a formula for $[\Gamma(1): \Gamma(N)]$.

