Homework 4 Due: Friday, October 2

1. Let $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, and $\Gamma' = \langle S, T \rangle$. The goal of this problem is to give an alternate proof that, setting $\Gamma' = \langle S, T \rangle$, we have $\Gamma' = SL_2(\mathbb{Z})$.

Suppose $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}).$

For a matrix A, let A_{ij} denote the entry in row i, column j.

- (a) Suppose c = 0. Show that $\gamma \in \Gamma'$. *Henceforth, assume* $c \neq 0$.
- (b) Show that we may assume $|\gamma_{11}| \ge |\gamma_{12}|$.
- (c) Show there exists some *q* such that

$$|(T^{-q}\gamma)_{11}| \le |(T^{-q}\gamma)_{21}|.$$

(HINT: *Write* $a = cq + r, 0 \le r < |c|$.)

- (d) Iterate.
- 2. Let *X* and *Y* be compact Riemann surfaces, and let $\phi : X \to Y$ be a nonconstant holomorphic map. If $P \in X$, the *multiplicity* of ϕ at *P* may be defined as follows: Let *w* be a local coordinate on *X* centered at *P* (so that w(P) = 0), and let *z* be a local coordinate on *Y* centered at *Q*. Locally, ϕ is given by a function z = f(w); then $\mu_P(\phi) = \operatorname{ord}_{w=0} f$.

Consider the local meromorphic differential dz on Y. Calculate

 $\operatorname{ord}_{P} f^{*} dz;$

your answer should be in terms of $\mu_P(\phi)$.

(HINT: By HW3, you can choose local coordinates so that ϕ is given by

$$z=w^{\mu_P(\phi)}.$$

)

3. If $\phi : X \to Y$ is a nonconstant holomorphic map of compact Riemann surfaces, there is an induced map

$$\operatorname{Div}(Y) \xrightarrow{\phi^*} \operatorname{Div}(X)$$

where

$$\phi^*Q = \sum_{P \in \phi^{-1}(Q)} \mu_P(\phi) P$$

Professor Jeff Achter Colorado State University Math 619: Complex Variables II Fall 2015 and we extend by linearity:

$$\phi^*(\sum_Q n_Q Q) = \sum_Q n_Q \phi^* Q$$

It turns out that, if deg $\phi = d$, then for each $Q \in Y$ we have

$$\deg(\phi^*Q) = d.$$

(a) Now suppose that ω is a nonconstant meromorphic differential on *Y*, with no zero or pole in the branch locus of ϕ . Show that

$$\deg(\phi^*\omega) = d\deg(\omega) + \sum_{P \in X} (\mu_P(\phi) - 1).$$

- (b) Deduce the Riemann-Hurwitz formula. (HINT: *Remember that if Z is a compact Riemann surface and if* ω_Z *is a nonconstant meromorphic differential, then* deg(ω_Z) = 2g_Z 2.)
- 4. Recall that

$$\Gamma(1) = \operatorname{SL}_2(\mathbb{Z})$$

$$\Gamma(N) = \ker \left(\operatorname{SL}_2(\mathbb{Z}) \to \operatorname{SL}_2(\mathbb{Z}/N) \right).$$

Give an explicit formula for the index

 $[\Gamma(1):\Gamma(N)].$

If you like, you may proceed as follows.

- (a) Explain why it suffices to calculate $\# \operatorname{GL}_2(\mathbb{Z}/N)$.
- (b) Explain why it suffices to calculate, for a prime ℓ , $\# \operatorname{GL}_2(\mathbb{Z}/\ell^r)$.
- (c) Explain how to quickly calculate $\#gl_2(\mathbb{Z}/\ell^r)$ in terms of $\#GL_2(\mathbb{Z}/\ell)$
- (d) Calculate $#gl_2(\mathbb{Z}/\ell)$.
- (e) Conclude with a formula for $[\Gamma(1) : \Gamma(N)]$.