Homework 2

Due: Friday, September 11

1. Consider the unit sphere $X=\left\{(a, b, c): a^{2}+b^{2}+c^{2}=1\right\} \subset \mathbb{R}^{3}$. Let $N=(0,0,1), S=$ $(0,0,-1), U_{N}=X-\{N\}, U_{S}=X-\{S\}$. Consider the following three charts on X :

$$
\begin{gathered}
U_{N} \xrightarrow{\phi_{N}} \mathbb{C} \\
\left(a_{0}, b_{0}, c_{0}\right) \longmapsto \frac{a_{0}+i b_{0}}{1-c_{0}} \\
U_{S} \xrightarrow{\phi_{S}} \mathbb{C} \\
\left(a_{0}, b_{0}, c_{0}\right) \longmapsto \frac{a_{0}+i b_{0}}{1+c_{0}} \\
U_{S} \xrightarrow{\psi_{S}} \mathbb{C} \\
\left(a_{0}, b_{0}, c_{0}\right) \longmapsto \frac{a_{0}-i b_{0}}{1+c_{0}}
\end{gathered}
$$

(a) The inverse of ϕ_{N} is

$$
\phi_{N}^{-1}(z)=\left(\frac{2 \operatorname{Re}(z)}{|z|^{2}+1}, \frac{2 \operatorname{Im}(z)}{|z|^{2}+1}, \frac{|z|^{2}-1}{|z|^{2}+1}\right) .
$$

Calculate $\phi_{S}^{-1}(z)$ and $\psi_{S}^{-1}(z)$.
(b) Among the three charts $\left\{\left(U_{N}, \phi_{N}\right),\left(U_{S}, \phi_{S}\right),\left(U_{S}, \psi_{S}\right)\right\}$, one pair is compatible and the other two are not. Which is which? Why? (Hint: Remember that a function f is holomorphic if and only if $\partial_{\bar{z}} f=0$; colloquially, a function is holomorphic if it doesn't involve any $\left.\bar{z}^{\prime} s.\right)$
2. Fix $n \geq 1$. (Complex) projective n-space is defined as

$$
\mathbb{P}^{n}(\mathbb{C})=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \sim,
$$

where

$$
\left(a_{0}, \cdots, a_{n}\right) \sim\left(\lambda a_{0}, \lambda a_{1}, \cdots, \lambda a_{n}\right)
$$

for each $\lambda \in \mathbb{C}^{\times}$. The equivalence class of $\left(a_{0}, \cdots, a_{n}\right)$ in \mathbb{P}^{n} will be denoted $\left[a_{0}, \cdots, a_{n}\right]$.
Remark: We could also define it as the quotient of $\mathbb{C}^{n+1} \backslash\{0\}$ by the action of the multiplicative group \mathbb{G}_{m}; this already shows that \mathbb{P}^{n} is irreducible and Hausdorff.
For $0 \leq i \leq n$, let

$$
\begin{aligned}
& H_{i}=\left\{\left[a_{0}, \cdots, a_{n}\right]: a_{i}=0\right\} \\
& U_{i}=\mathbb{P}^{n} \backslash H_{i} .
\end{aligned}
$$

and define a chart

$$
\begin{gathered}
U_{i} \xrightarrow{\phi_{i}} \mathbb{C}^{n} \\
{\left[a_{0}, \cdots, a_{n}\right] \mapsto\left(\frac{a_{0}}{a_{i}}, \cdots, \frac{a_{i-1}}{a_{i}}, \frac{a_{i+1}}{a_{i}}, \cdots, \frac{a_{n}}{a_{i}}\right) .}
\end{gathered}
$$

(a) Prove that ϕ_{i} is well-defined, i.e., that it is independent of the choice of representative for $\left[a_{0}, \cdots, a_{n}\right]$, and that ϕ_{i} is an inclusion.
(b) Prove that $\left\{\phi_{i}\right\}_{0 \leq i \leq n}$ is a compatible family of analytic charts on \mathbb{P}^{n}, and thus gives \mathbb{P}^{n} the structure of a complex manifold.
3. Consider the map

$$
\begin{align*}
& \mathbb{P}^{1} \xrightarrow{\alpha} \\
& {\left[z_{0}, z_{1}\right] \longmapsto\left(\frac{2 \operatorname{Re}\left(z_{1} \overline{z_{0}}\right)}{\left|z_{1}\right|^{2}+\left|z_{0}\right|^{2}}, \frac{2 \operatorname{Im}\left(z_{1} \overline{z_{0}}\right)}{\left|z_{1}\right|^{2}+\left|z_{0}\right|^{2}}, \frac{\left|z_{1}\right|^{2}-\left|z_{0}\right|^{2}}{\left|z_{1}\right|^{2}+\left|z_{0}\right|^{2}}\right.} \tag{1}
\end{align*}
$$

(a) Show that this really is a function on \mathbb{P}^{1}, i.e., if $\lambda \in \mathbb{C}^{\times}$, then $\alpha\left(\left[\lambda z_{0}, \lambda z_{1}\right]\right)=\alpha\left(\left[z_{0}, z_{1}\right]\right)$.
(b) Show that the image of α is the unit sphere $a^{2}+b^{2}+c^{2}=1$. (In fact, α is a homeomorphism.) (HINT: Remember that for any $w \in \mathbb{C}, \operatorname{Re}(w)=\frac{w+\bar{w}}{2}, \operatorname{Im}(w)=\frac{w-\bar{w}}{2 i}$, and $\left.|w|^{2}=w \bar{w}.\right)$
4. Endow S^{2} with the complex structure of given in Problem (1), and \mathbb{P}^{1} with the complex structure from Problem (2). Show that the map α in (1) is holomorphic.
5. Recall that $\mathrm{SL}_{2}(\mathbb{R})$ acts on the upper half-plane \mathbb{H}.
(a) Show that $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ stabilizes every element of \mathbb{H}. Therefore, the action of $\mathrm{SL}_{2}(\mathbb{R})$ on \mathbb{H} factors through the quotient $\operatorname{PSL}_{2}(\mathbb{R})=\mathrm{SL}_{2}(\mathbb{R}) / \pm$ id.
(b) Compute the stabilizer $\operatorname{Stab}_{\mathrm{SL}_{2}(\mathbb{Z})}(i)$.
(c) Find some $P \in \mathbb{H}$ such that $\operatorname{Stab}_{\mathrm{SL}_{2}(\mathbb{Z})}(P)= \pm$ id.

