1 Review: Functions of a single variable

1.1 Analytic functions

Suppose $z_0 \in \mathbb{C}$, *U* some open neighborhood of z_0 , *f* defined on *U*. Then *f* is called analytic, or differentiable, or holomorphic at z_0 if the limit

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists.

Cauchy-Riemann equations Think of *f* as a function from \mathbb{R}^2 to \mathbb{R}^2 ; f(z) = u(x, y) + iv(x, y). Then $f'(z_0)$ exists if and only if (*u* and *v* have continuous first derivatives and)

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

the Cauchy-Riemann equations

Formal/algebraic version On $\mathbb{C} \cong \mathbb{R}^2$, we have the real coordinates *x* and *y*; then z = x + iy. The conjugate is $\overline{z} = x - iy$. So, we can also use *z* and \overline{z} as coordinates on \mathbb{C} ; then

$$x = \frac{z + \overline{z}}{2}$$
$$y = \frac{z - \overline{z}}{2i}$$

Think of *f* a function of the *real* variables f(x, y) (abuse of notation). Formally, we have

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial z} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial z}$$
$$= \frac{\partial f}{\partial x}\frac{1}{2} + \frac{\partial f}{\partial y}\frac{1}{2i}$$

and define the operator

$$\partial_z = \frac{\partial}{\partial z} = \frac{1}{2}(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})$$

Professor Jeff Achter Colorado State University 1

and

$$\frac{\partial f}{\partial \overline{z}} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \overline{z}} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \overline{z}}$$
$$= \frac{\partial f}{\partial x} \frac{1}{2} + \frac{\partial f}{\partial y} \frac{-1}{2i}$$
$$\partial_{\overline{z}} = \frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)$$

Then the Cauchy-Riemann equations are equivalent to:

$$\partial_{\overline{z}}f = 0.$$

Example \overline{z} is not holomorphic.

Theorem Suppose *f* is analytic everywhere inside and on a simple closed positive contour *C*. If z_0 is any point interior to *C*, then

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(w)}{w - z_0} dw.$$

Here is another, equivalent way of phrasing this:

Variant Suppose *f* is analytic on an open set containing $\overline{N_r(z_0)}$. Then for each $z \in N_r(z_0)$,

$$f(z) = \frac{1}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)}{w-z} dw$$

This has a number of important corollaries.

Corollary Same hypotheses; then *f* has derivatives of all orders at z_0 , and

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_C \frac{f(w)}{(w - z_0)^{n+1}} dw.$$

Lemma Suppose *f* analytic inside and on a circle C_R centered at z_0 of radius *R*. Let $M_R = \max_{z \in C_R} |f(z)|$. Then

$$\left|f^{(n)}(z_0)\right| \leq \frac{n!M_R}{R^n}.$$

Professor Jeff Achter Colorado State University 2

This follows immediately from the representation theorem;

$$\begin{split} \left| f^{(n)}(z) \right| &= \left| \frac{n!}{2\pi i} \int_C \frac{f(w)}{(w-z)^{n+1}} dw \right| \\ &\leq \frac{n!}{2\pi} \int_C \left| \frac{f(w)}{(w-z)^{n+1}} \right| |dw| \\ &\leq \frac{n!}{2\pi} \int_C \frac{M_R}{R^{n+1}} |dw| \\ &= \frac{n!}{2\pi} \frac{M_R}{R^{n+1}} 2\pi R \\ &= \frac{n!M_R}{R^n}. \end{split}$$

Theorem [Liouville] If *f* is entire and bounded, then *f* is constant.

Proof Suppose that $f(z) \le M$ for all *z*. Then for each *z* and each R > 0, we have

$$\left|f'(z)\right| \le \frac{M}{R}.$$

Therefore, f'(z) = 0 for each *z*, and *f* is constant.

Get a series representation:

Theorem Suppose that *f* is analytic throughout a disk $|z - z_0| < R$. Then f(z) has the power series representation

$$f(z) = \sum_{n \ge 0} a_n (z - z_0)^n$$
$$a_n = \frac{f^{(n)}(z_0)}{n!}$$

for $|z - z_0| < R$.

The proof uses the Cauchy representation for the derivatives of a function.

1.2 Orders, residues

There are series developments even for functions which aren't analytic, as follows.

Professor Jeff Achter	3	Math 619: Complex Variables II
Colorado State University		Fall 2015

Laurent's Theorem Suppose *f* is analytic in the annular domain $A = R_1 < |z - z_0| < R_2$ centered at z_0 , and let *C* be a positive simple closed contour around z_0 lying in *A*. Then, for each $z \in A$, we have

$$f(z) = \sum_{n \ge 0} a_n (z - z_0)^n + \sum_{n \ge 1} \frac{b_n}{(z - z_0)^n}$$
$$a_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$
$$b_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{-n+1}} dz$$

Equivalently,

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n$$
$$c_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{n+1}} dz.$$

If arbitrarily many coefficients c_N , N < 0, are nonzero, then the function is said to have an essential singularity. Otherwise, let N be the smallest integer such that $c_N \neq 0$; this is also denoted $\operatorname{ord}_{z_0}(f)$. If N < 0, then f has a pole of order -N at z_0 . If $N \ge 0$, then f has a zero of order N at z_0 .

f has a zero of order *N* if $f(z_0) = f'(z_0) = \cdots = f^{(N-1)}(z_0) = 0$ but $f^{(N)}(z_0) \neq 0$.

Definition A function f is called meromorphic if there is a discrete set $Z \subset \mathbb{C}$ such that $f|_{\mathbb{C}-Z}$ is analytic; Z is discrete; and for $z_0 \in Z$, f has a pole (of finite order) at z_0 .

Proposition Let $S \subset \mathbb{C}$ be open and connected. Then the set of all meromorphic functions on *S* is a field.

Proof The only issue is quotients; but if an analytic function f vanishes on some set with a limit point, then it's actually identically zero. Similarly, if it has a zero of "infinite order", then it is identically zero.

Suppose that *f* is analytic on and inside some positive, simple closed contour *C* which contains z_0 , except at z_0 . The residue of *f* at z_0 is

$$\operatorname{res}(f; z_0) = \operatorname{res}_{z=z_0} f(z) = \frac{1}{2\pi i} \int_C f(z)$$
$$= b_1$$
$$= c_{-1}$$

Professor Jeff Achter Colorado State University 4

where

$$f(z) = \sum a_n (z - z_0)^n + \sum \frac{b_n}{(z - z_0)^n} = \sum_{n \in \mathbb{Z}} c_n (z - z_0)^n$$

is the Laurent series expansion.

Roughly, what's happening is: Let *C* be the unit circle around the origin. Then

$$\int_{C} z^{n} dz = \begin{cases} 0 & n \ge 0\\ 2\pi i & n = -1 \\ 0 & n < -1 \end{cases}$$

So, if you have a function with a Laurent series expansion, integrating around z_0 picks off the coefficient of $1/(z - z_0)$.

If you know how to calculate residues, then you know how to calculate zeros and poles:

Theorem If *f* is meromorphic, then

$$\operatorname{res}(\frac{f'}{f};z_0) = \operatorname{ord}_{z_0}(f).$$

Proof If *f* has a zero, follows from a direct calculation. Now use the fact that (fg)'/(fg) = (f'/f) + (g'/g), and the residue is additive.

It is only the residues which contribute to a contour integral:

Residue theorem Suppose C is a simple positive closed contour, with interior D. Suppose f is meromorphic, and analytic on C. Then

$$\int_C f(z)dz = 2\pi i \sum_{P \in D} \operatorname{res}(f; P).$$

2 Review: The upper half-plane

The upper half plane is

$$\mathbb{H} = \mathbb{H}^+ = \{ z \in \mathbb{C} : \operatorname{Im}(z) > 0 \}.$$

Professor Jeff Achter Colorado State University 5

We sometimes also use the lower half-plane

$$\mathbb{H}^- = \{z \in \mathbb{C} : \mathrm{Im}(z) < 0\}$$

so that \mathbb{C} is a disjoint union

$$\mathbb{C} = \mathbb{H} \cup \mathbb{H}^- \cup \mathbb{R}.$$

Set $\mathbb{H}^{\pm} = \mathbb{H} \cup \mathbb{H}^{-}$.

In this section, we review some facts about automorphisms of \mathbb{H} .

Suppose $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{C})$. We define the function

$$C \xrightarrow{f_{\alpha}} C$$
$$z \longmapsto \frac{az+b}{cz+d}.$$

Question 2.1. *a.* Let
$$\alpha = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$$
. Describe the effect of f_{α} on \mathbb{C} .
b. Let $\beta = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$. Describe the effect of f_{β} on \mathbb{C} .
c. Let $\gamma = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Describe the effect of f_{γ} on \mathbb{C} .

These functions satisfy some easy formal properties:

Question 2.2. *a.* Show that f_{α} is meromorphic on \mathbb{C} .

b. Suppose $\alpha \in GL_2(\mathbb{C})$ and $\lambda \in \mathbb{C}^{\times}$. Show there is an equality of (meromorphic) functions

$$f_{\alpha} = f_{\lambda\alpha}$$

c. Suppose $\alpha, \beta \in GL_2(\mathbb{C})$. Show that there is an equality of functions

$$f_{\alpha\beta}=f_{\alpha}\circ f_{\beta}.$$

If we focus on matrices with real coefficients, we start getting at the structure of the upper half plane.

Question 2.3. *a.* Suppose $\alpha \in GL_2(\mathbb{R})$. Show that α is holomorphic on \mathbb{H}^{\pm} .

Professor Jeff Achter	6	Math 619: Complex Variables II
Colorado State University		Fall 2015

b. Suppose $\alpha \in GL_2(\mathbb{R})^+$, i.e., that $det(\alpha) > 0$. Show there exists some $\beta \in SL_2(\mathbb{R})$ such that

 $f_{\alpha} = f_{\beta}.$

c. In the previous question, is β unique?

It turns out that what we actually want to study is those functions which preserve H.

Question 2.4. *Suppose* $\alpha \in SL_2(\mathbb{R})$ *. Show that* $f_{\alpha}(\mathbb{H}) \subseteq \mathbb{H}$ *.*

Here are two different ways of doing this:

- *a.* Directly compute $\text{Im}(f_{\alpha}(z))$. (Remember, $\text{Im}(w) = \frac{1}{2i}(w \overline{w})$.)
- b. This is (much?) more work, but maybe more fun:
 - (*i*) Show that $0 \notin f_{\alpha}(\mathbb{H}^{\pm})$.
 - (*ii*) Show that $f_{\alpha}(\mathbb{H}^{\pm})$ contains no element of \mathbb{R} . (HINT: Use problem 2.1.)
 - (iii) Show that $SL_2(\mathbb{R})$ is connected (either use the Iwasawa decomposition, or point-counting over finite fields and Lang-Weil).
 - (iv) Show that there exists some $\beta \in SL_2(\mathbb{R})$ and some $z_0 \in \mathbb{H}$ such that $f_\beta(z_0) \in \mathbb{H}$.
 - (v) Explain why this shows that, for each $\alpha \in SL_2(\mathbb{R})$ and each $z \in \mathbb{H}$, $f_{\alpha}(z) \in \mathbb{H}$. (HINT: Use connectedness.)

Moreover, we can use $SL_2(\mathbb{R})$ to give a construction of \mathbb{H} as a quotient space:

- **Question 2.5.** *a.* Show that $SL_2(\mathbb{R})$ acts transitively on \mathbb{H} . (HINT: Given $z_0 \in \mathbb{H}$, first show how to find an $\alpha \in SL_2(\mathbb{R})$ such that $Re(f_{\alpha}(z_0)) = 0$. Now find a β such that $f_{\beta}(f_{\alpha}(z_0)) = i$.)
 - b. Describe the stabilizer

 $\operatorname{Stab}_{\operatorname{SL}_2(\mathbb{R})}(i) := \{ \alpha \in \operatorname{SL}_2(\mathbb{R}) : f_\alpha(i) = i \}.$