1 Review: Functions of a single variable

1.1 Analytic functions

Suppose $z_{0} \in \mathbb{C}, U$ some open neighborhood of z_{0}, f defined on U. Then f is called analytic, or differentiable, or holomorphic at z_{0} if the limit

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

exists.

Cauchy-Riemann equations Think of f as a function from \mathbb{R}^{2} to $\mathbb{R}^{2} ; f(z)=u(x, y)+i v(x, y)$. Then $f^{\prime}\left(z_{0}\right)$ exists if and only if (u and v have continuous first derivatives and)

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \\
& \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
\end{aligned}
$$

the Cauchy-Riemann equations

Formal/algebraic version On $\mathbb{C} \cong \mathbb{R}^{2}$, we have the real coordinates x and y; then $z=x+i y$. The conjugate is $\bar{z}=x-i y$. So, we can also use z and \bar{z} as coordinates on \mathbb{C}; then

$$
\begin{aligned}
& x=\frac{z+\bar{z}}{2} \\
& y=\frac{z-\bar{z}}{2 i}
\end{aligned}
$$

Think of f a function of the real variables $f(x, y)$ (abuse of notation). Formally, we have

$$
\begin{aligned}
\frac{\partial f}{\partial z} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial z}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial z} \\
& =\frac{\partial f}{\partial x} \frac{1}{2}+\frac{\partial f}{\partial y} \frac{1}{2 i}
\end{aligned}
$$

and define the operator

$$
\partial_{z}=\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)
$$

Professor Jeff Achter
and

$$
\begin{aligned}
\frac{\partial f}{\partial \bar{z}} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial \bar{z}}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \bar{z}} \\
& =\frac{\partial f}{\partial x} \frac{1}{2}+\frac{\partial f}{\partial y} \frac{-1}{2 i} \\
\partial_{\bar{z}}=\frac{\partial}{\partial \bar{z}} & =\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
\end{aligned}
$$

Then the Cauchy-Riemann equations are equivalent to:

$$
\partial_{\bar{z}} f=0
$$

Example \bar{z} is not holomorphic.

Theorem Suppose f is analytic everywhere inside and on a simple closed positive contour C. If z_{0} is any point interior to C, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(w)}{w-z_{0}} d w .
$$

Here is another, equivalent way of phrasing this:

Variant Suppose f is analytic on an open set containing $\overline{N_{r}\left(z_{0}\right)}$. Then for each $z \in N_{r}\left(z_{0}\right)$,

$$
f(z)=\frac{1}{2 \pi i} \int_{\left|w-z_{0}\right|=r} \frac{f(w)}{w-z} d w .
$$

This has a number of important corollaries.

Corollary Same hypotheses; then f has derivatives of all orders at z_{0}, and

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} d w .
$$

Lemma Suppose f analytic inside and on a circle C_{R} centered at z_{0} of radius R. Let $M_{R}=$ $\max _{z \in C_{R}}|f(z)|$. Then

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M_{R}}{R^{n}}
$$

This follows immediately from the representation theorem;

$$
\begin{aligned}
\left|f^{(n)}(z)\right| & =\left|\frac{n!}{2 \pi i} \int_{C} \frac{f(w)}{(w-z)^{n+1}} d w\right| \\
& \leq \frac{n!}{2 \pi} \int_{C}\left|\frac{f(w)}{(w-z)^{n+1}}\right||d w| \\
& \leq \frac{n!}{2 \pi} \int_{C} \frac{M_{R}}{R^{n+1}}|d w| \\
& =\frac{n!}{2 \pi} \frac{M_{R}}{R^{n+1}} 2 \pi R \\
& =\frac{n!M_{R}}{R^{n}} .
\end{aligned}
$$

Theorem [Liouville] If f is entire and bounded, then f is constant.

Proof Suppose that $f(z) \leq M$ for all z. Then for each z and each $R>0$, we have

$$
\left|f^{\prime}(z)\right| \leq \frac{M}{R}
$$

Therefore, $f^{\prime}(z)=0$ for each z, and f is constant.
Get a series representation:

Theorem Supppose that f is analytic throughout a disk $\left|z-z_{0}\right|<R$. Then $f(z)$ has the power series representation

$$
\begin{aligned}
f(z) & =\sum_{n \geq 0} a_{n}\left(z-z_{0}\right)^{n} \\
a_{n} & =\frac{f^{(n)}\left(z_{0}\right)}{n!}
\end{aligned}
$$

for $\left|z-z_{0}\right|<R$.
The proof uses the Cauchy representation for the derivatives of a function.

1.2 Orders, residues

There are series developments even for functions which aren't analytic, as follows.

Laurent's Theorem Suppose f is analytic in the annular domain $A=R_{1}<\left|z-z_{0}\right|<R_{2}$ centered at z_{0}, and let C be a positive simple closed contour around z_{0} lying in A. Then, for each $z \in A$, we have

$$
\begin{aligned}
f(z) & =\sum_{n \geq 0} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n \geq 1} \frac{b_{n}}{\left(z-z_{0}\right)^{n}} \\
a_{n} & =\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \\
b_{n} & =\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{-n+1}} d z
\end{aligned}
$$

Equivalently,

$$
\begin{aligned}
f(z) & =\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n} \\
c_{n} & =\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z .
\end{aligned}
$$

If arbtirarily many coefficients $c_{N}, N<0$, are nonzero, then the function is said to have an essential singularity. Otherwise, let N be the smallest integer such that $c_{N} \neq 0$; this is also denoted $\operatorname{ord}_{z_{0}}(f)$. If $N<0$, then f has a pole of order $-N$ at z_{0}. If $N \geq 0$, then f has a zero of order N at z_{0}.
f has a zero of order N if $f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{(N-1)}\left(z_{0}\right)=0$ but $f^{(N)}\left(z_{0}\right) \neq 0$.

Definition A function f is called meromorphic if there is a discrete set $Z \subset \mathbb{C}$ such that $\left.f\right|_{\mathrm{C}-Z}$ is analytic; Z is discrete; and for $z_{0} \in Z, f$ has a pole (of finite order) at z_{0}.

Proposition Let $S \subset \mathbb{C}$ be open and connected. Then the set of all meromorphic functions on S is a field.

Proof The only issue is quotients; but if an analytic function f vanishes on some set with a limit point, then it's actually identically zero. Similarly, if it has a zero of "infinite order", then it is identically zero.

Suppose that f is analytic on and inside some positive, simple closed contour C which contains z_{0}, except at z_{0}. The residue of f at z_{0} is

$$
\begin{aligned}
\operatorname{res}\left(f ; z_{0}\right)=\operatorname{res}_{z=z_{0}} f(z) & =\frac{1}{2 \pi i} \int_{C} f(z) \\
& =b_{1} \\
& =c_{-1}
\end{aligned}
$$

where

$$
\begin{aligned}
f(z) & =\sum a_{n}\left(z-z_{0}\right)^{n}+\sum \frac{b_{n}}{\left(z-z_{0}\right)^{n}} \\
& =\sum_{n \in \mathbb{Z}} c_{n}\left(z-z_{0}\right)^{n}
\end{aligned}
$$

is the Laurent series expansion.
Roughly, what's happening is: Let C be the unit circle around the origin. Then

$$
\int_{C} z^{n} d z= \begin{cases}0 & n \geq 0 \\ 2 \pi i & n=-1 \\ 0 & n<-1\end{cases}
$$

So, if you have a function with a Laurent series expansion, integrating around z_{0} picks off the coefficient of $1 /\left(z-z_{0}\right)$.
If you know how to calculate residues, then you know how to calculate zeros and poles:

Theorem If f is meromorphic, then

$$
\operatorname{res}\left(\frac{f^{\prime}}{f} ; z_{0}\right)=\operatorname{ord}_{z_{0}}(f)
$$

Proof If f has a zero, follows from a direct calculation. Now use the fact that $(f g)^{\prime} /(f g)=$ $\left(f^{\prime} / f\right)+\left(g^{\prime} / g\right)$, and the residue is additive.
It is only the residues which contribute to a contour integral:

Residue theorem Suppose C is a simple positive closed contour, with interior D. Suppose f is meromorphic, and analytic on C. Then

$$
\int_{C} f(z) d z=2 \pi i \sum_{P \in D} \operatorname{res}(f ; P) .
$$

2 Review: The upper half-plane

The upper half plane is

$$
\mathbb{H}=\mathbb{H}^{+}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\} .
$$

Professor Jeff Achter
Math 619: Complex Variables II Fall 2015

We sometimes also use the lower half-plane

$$
\mathbb{H}^{-}=\{z \in \mathbb{C}: \operatorname{Im}(z)<0\}
$$

so that \mathbb{C} is a disjoint union

$$
\mathbb{C}=\mathbb{H} \cup \mathbb{H}^{-} \cup \mathbb{R} .
$$

Set $\mathbb{H}^{ \pm}=\mathbb{H} \cup \mathbb{H}^{-}$.
In this section, we review some facts about automorphisms of \mathbb{H}.
Suppose $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{C})$. We define the function

$$
\begin{aligned}
& \mathbb{C} \xrightarrow{f_{\alpha}} \mathbb{C} \\
& z \longmapsto \frac{a z+b}{c z+d} .
\end{aligned}
$$

Question 2.1. a. Let $\alpha=\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)$. Describe the effect of f_{α} on \mathbf{C}.
b. Let $\beta=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$. Describe the effect of f_{β} on \mathbb{C}.
c. Let $\gamma=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Describe the effect of f_{γ} on \mathbb{C}.

These functions satisfy some easy formal properties:
Question 2.2. a. Show that f_{α} is meromorphic on \mathbf{C}.
b. Suppose $\alpha \in \mathrm{GL}_{2}(\mathbb{C})$ and $\lambda \in \mathbb{C}^{\times}$. Show there is an equality of (meromorphic) functions

$$
f_{\alpha}=f_{\lambda \alpha} .
$$

c. Suppose $\alpha, \beta \in \mathrm{GL}_{2}(\mathbb{C})$. Show that there is an equality of functions

$$
f_{\alpha \beta}=f_{\alpha} \circ f_{\beta}
$$

If we focus on matrices with real coefficients, we start getting at the structure of the upper half plane.

Question 2.3. a. Suppose $\alpha \in \mathrm{GL}_{2}(\mathbb{R})$. Show that α is holomorphic on $\mathbb{H}^{ \pm}$.
b. Suppose $\alpha \in \mathrm{GL}_{2}(\mathbb{R})^{+}$, i.e., that $\operatorname{det}(\alpha)>0$. Show there exists some $\beta \in \mathrm{SL}_{2}(\mathbb{R})$ such that

$$
f_{\alpha}=f_{\beta} .
$$

c. In the previous question, is β unique?

It turns out that what we actually want to study is those functions which preserve \mathbb{H}.
Question 2.4. Suppose $\alpha \in \mathrm{SL}_{2}(\mathbb{R})$. Show that $f_{\alpha}(\mathbb{H}) \subseteq \mathbb{H}$.
Here are two different ways of doing this:
a. Directly compute $\operatorname{Im}\left(f_{\alpha}(z)\right)$. (Remember, $\operatorname{Im}(w)=\frac{1}{2 i}(w-\bar{w})$.)
b. This is (much?) more work, but maybe more fun:
(i) Show that $0 \notin f_{\alpha}\left(\mathbb{H}^{ \pm}\right)$.
(ii) Show that $f_{\alpha}\left(\mathbb{H}^{ \pm}\right)$contains no element of \mathbb{R}. (HinT: Use problem 2.1.)
(iii) Show that $\mathrm{SL}_{2}(\mathbb{R})$ is connected (either use the Iwasawa decomposition, or point-counting over finite fields and Lang-Weil).
(iv) Show that there exists some $\beta \in \mathrm{SL}_{2}(\mathbb{R})$ and some $z_{0} \in \mathbb{H}$ such that $f_{\beta}\left(z_{0}\right) \in \mathbb{H}$.
(v) Explain why this shows that, for each $\alpha \in \mathrm{SL}_{2}(\mathbb{R})$ and each $z \in \mathbb{H}, f_{\alpha}(z) \in \mathbb{H}$. (Hint: Use connectedness.)

Moreover, we can use $\mathrm{SL}_{2}(\mathbb{R})$ to give a construction of \mathbb{H} as a quotient space:
Question 2.5. a. Show that $\mathrm{SL}_{2}(\mathbb{R})$ acts transitively on \mathbb{H}. (HINT: Given $z_{0} \in \mathbb{H}$, first show how to find an $\alpha \in \mathrm{SL}_{2}(\mathbb{R})$ such that $\operatorname{Re}\left(f_{\alpha}\left(z_{0}\right)\right)=0$. Now find a β such that $f_{\beta}\left(f_{\alpha}\left(z_{0}\right)\right)=i$.)
b. Describe the stabilizer

$$
\operatorname{Stab}_{\mathrm{SL}_{2}(\mathbb{R})}(i):=\left\{\alpha \in \mathrm{SL}_{2}(\mathbb{R}): f_{\alpha}(i)=i\right\}
$$

