
August 7, 2015

1 Review: Functions of a single variable

1.1 Analytic functions

Suppose z0 ∈ C, U some open neighborhood of z0, f defined on U. Then f is called analytic, or
differentiable, or holomorphic at z0 if the limit

f ′(z0) = lim
z→z0

f (z)− f (z0)

z− z0

exists.

Cauchy-Riemann equations Think of f as a function from R2 to R2; f (z) = u(x, y) + iv(x, y).
Then f ′(z0) exists if and only if (u and v have continuous first derivatives and)

∂u
∂x

=
∂v
∂y

∂v
∂x

= −∂u
∂y

,

the Cauchy-Riemann equations

Formal/algebraic version On C ∼= R2, we have the real coordinates x and y; then z = x + iy.
The conjugate is z = x− iy. So, we can also use z and z as coordinates on C; then

x =
z + z

2

y =
z− z

2i

Think of f a function of the real variables f (x, y) (abuse of notation). Formally, we have

∂ f
∂z

=
∂ f
∂x

∂x
∂z

+
∂ f
∂y

∂y
∂z

=
∂ f
∂x

1
2
+

∂ f
∂y

1
2i

and define the operator

∂z =
∂

∂z
=

1
2
(

∂

∂x
− i

∂

∂y
)
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and

∂ f
∂z

=
∂ f
∂x

∂x
∂z

+
∂ f
∂y

∂y
∂z

=
∂ f
∂x

1
2
+

∂ f
∂y
−1
2i

∂z =
∂

∂z
=

1
2
(

∂

∂x
+ i

∂

∂y
)

Then the Cauchy-Riemann equations are equivalent to:

∂z f = 0.

Example z is not holomorphic.

Theorem Suppose f is analytic everywhere inside and on a simple closed positive contour C. If
z0 is any point interior to C, then

f (z0) =
1

2πi

∫
C

f (w)

w− z0
dw.

Here is another, equivalent way of phrasing this:

Variant Suppose f is analytic on an open set containing Nr(z0). Then for each z ∈ Nr(z0),

f (z) =
1

2πi

∫
|w−z0|=r

f (w)

w− z
dw.

This has a number of important corollaries.

Corollary Same hypotheses; then f has derivatives of all orders at z0, and

f (n)(z0) =
n!

2πi

∫
C

f (w)

(w− z0)n+1 dw.

Lemma Suppose f analytic inside and on a circle CR centered at z0 of radius R. Let MR =
maxz∈CR | f (z)|. Then ∣∣∣ f (n)(z0)

∣∣∣ ≤ n!MR

Rn .
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This follows immediately from the representation theorem;∣∣∣ f (n)(z)∣∣∣ = ∣∣∣∣ n!
2πi

∫
C

f (w)

(w− z)n+1 dw
∣∣∣∣

≤ n!
2π

∫
C

∣∣∣∣ f (w)

(w− z)n+1

∣∣∣∣|dw|

≤ n!
2π

∫
C

MR

Rn+1 |dw|

=
n!
2π

MR

Rn+1 2πR

=
n!MR

Rn .

Theorem [Liouville] If f is entire and bounded, then f is constant.

Proof Suppose that f (z) ≤ M for all z. Then for each z and each R > 0, we have

∣∣ f ′(z)∣∣ ≤ M
R

.

Therefore, f ′(z) = 0 for each z, and f is constant.

Get a series representation:

Theorem Supppose that f is analytic throughout a disk |z− z0| < R. Then f (z) has the power
series representation

f (z) = ∑
n≥0

an(z− z0)
n

an =
f (n)(z0)

n!

for |z− z0| < R.

The proof uses the Cauchy representation for the derivatives of a function.

1.2 Orders, residues

There are series developments even for functions which aren’t analytic, as follows.
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Laurent’s Theorem Suppose f is analytic in the annular domain A = R1 < |z− z0| < R2 cen-
tered at z0, and let C be a positive simple closed contour around z0 lying in A. Then, for each
z ∈ A, we have

f (z) = ∑
n≥0

an(z− z0)
n + ∑

n≥1

bn

(z− z0)n

an =
1

2πi

∫
C

f (z)
(z− z0)n+1 dz

bn =
1

2πi

∫
C

f (z)
(z− z0)−n+1 dz

Equivalently,

f (z) =
∞

∑
n=−∞

cn(z− z0)
n

cn =
1

2πi

∫
C

f (z)
(z− z0)n+1 dz.

If arbtirarily many coefficients cN , N < 0, are nonzero, then the function is said to have an essential
singularity. Otherwise, let N be the smallest integer such that cN 6= 0; this is also denoted ordz0( f ).
If N < 0, then f has a pole of order −N at z0. If N ≥ 0, then f has a zero of order N at z0.

f has a zero of order N if f (z0) = f ′(z0) = · · · = f (N−1)(z0) = 0 but f (N)(z0) 6= 0.

Definition A function f is called meromorphic if there is a discrete set Z ⊂ C such that f |C−Z is
analytic; Z is discrete; and for z0 ∈ Z, f has a pole (of finite order) at z0.

Proposition Let S ⊂ C be open and connected. Then the set of all meromorphic functions on S
is a field.

Proof The only issue is quotients; but if an analytic function f vanishes on some set with a limit
point, then it’s actually identically zero. Similarly, if it has a zero of “infinite order”, then it is
identically zero.

Suppose that f is analytic on and inside some positive, simple closed contour C which contains
z0, except at z0. The residue of f at z0 is

res( f ; z0) = resz=z0 f (z) =
1

2πi

∫
C

f (z)

= b1

= c−1
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where

f (z) = ∑ an(z− z0)
n + ∑

bn

(z− z0)n

= ∑
n∈Z

cn(z− z0)
n

is the Laurent series expansion.

Roughly, what’s happening is: Let C be the unit circle around the origin. Then

∫
C

zndz =


0 n ≥ 0
2πi n = −1
0 n < −1

.

So, if you have a function with a Laurent series expansion, integrating around z0 picks off the
coefficient of 1/(z− z0).

If you know how to calculate residues, then you know how to calculate zeros and poles:

Theorem If f is meromorphic, then

res(
f ′

f
; z0) = ordz0( f ).

Proof If f has a zero, follows from a direct calculation. Now use the fact that ( f g)′/( f g) =
( f ′/ f ) + (g′/g), and the residue is additive.

It is only the residues which contribute to a contour integral:

Residue theorem Suppose C is a simple positive closed contour, with interior D. Suppose f is
meromorphic, and analytic on C. Then∫

C
f (z)dz = 2πi ∑

P∈D
res( f ; P).

2 Review: The upper half-plane

The upper half plane is

H = H+ = {z ∈ C : Im(z) > 0}.
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We sometimes also use the lower half-plane

H− = {z ∈ C : Im(z) < 0}

so that C is a disjoint union

C = H∪H− ∪R.

Set H± = H∪H−.

In this section, we review some facts about automorphisms of H.

Suppose α =

(
a b
c d

)
∈ GL2(C). We define the function

C
fα - C

z - az + b
cz + d

.

Question 2.1. a. Let α =

(
a 0
0 d

)
. Describe the effect of fα on C.

b. Let β =

(
1 b
0 1

)
. Describe the effect of fβ on C.

c. Let γ =

(
0 1
1 0

)
. Describe the effect of fγ on C.

These functions satisfy some easy formal properties:

Question 2.2. a. Show that fα is meromorphic on C.

b. Suppose α ∈ GL2(C) and λ ∈ C×. Show there is an equality of (meromorphic) functions

fα = fλα.

c. Suppose α, β ∈ GL2(C). Show that there is an equality of functions

fαβ = fα ◦ fβ.

If we focus on matrices with real coefficients, we start getting at the structure of the upper half
plane.

Question 2.3. a. Suppose α ∈ GL2(R). Show that α is holomorphic on H±.
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b. Suppose α ∈ GL2(R)+, i.e., that det(α) > 0. Show there exists some β ∈ SL2(R) such that

fα = fβ.

c. In the previous question, is β unique?

It turns out that what we actually want to study is those functions which preserve H.

Question 2.4. Suppose α ∈ SL2(R). Show that fα(H) ⊆H.

Here are two different ways of doing this:

a. Directly compute Im( fα(z)). (Remember, Im(w) = 1
2i (w− w).)

b. This is (much?) more work, but maybe more fun:

(i) Show that 0 6∈ fα(H±).

(ii) Show that fα(H±) contains no element of R. (HINT: Use problem 2.1.)

(iii) Show that SL2(R) is connected (either use the Iwasawa decomposition, or point-counting over
finite fields and Lang-Weil).

(iv) Show that there exists some β ∈ SL2(R) and some z0 ∈H such that fβ(z0) ∈H.

(v) Explain why this shows that, for each α ∈ SL2(R) and each z ∈ H, fα(z) ∈ H. (HINT: Use
connectedness.)

Moreover, we can use SL2(R) to give a construction of H as a quotient space:

Question 2.5. a. Show that SL2(R) acts transitively on H. (HINT: Given z0 ∈ H, first show how
to find an α ∈ SL2(R) such that Re( fα(z0)) = 0. Now find a β such that fβ( fα(z0)) = i.)

b. Describe the stabilizer
StabSL2(R)(i) := {α ∈ SL2(R) : fα(i) = i}.
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