Homework 6 Due: Friday, November 4

In the first two problems, we'll work with the power maps $p_d : \mathbb{G}_m \to \mathbb{G}_m$, the covering map $g : \mathbb{G}_m \to \mathbb{G}_m$ given by $z \mapsto z + z^{-1}$, and the Chebychev maps $T_d : \mathbb{C} \to \mathbb{C}$. Fix $d \ge 2$.

- 1. Fixed points of T_d
 - (a) Compute the fixed points of p_d .
 - (b) Use this to compute the fixed points of T_d . (HINT: You can express them using the cosine function; if $t \in \mathbb{R}$, what is $g(\exp(it))$?)
- 2. *Multipliers of* T_d For the fixed points ζ of T_d you found in the previous problem, compute the multipler $\lambda_{\zeta}(T_d) = T'_d(\zeta)$. (HINT: *Differentiate the relation*

$$T_d(z+z^{-1}) = z^d + z^{-d}$$

to find an expression for $T'_d(z + z^{-1})$.) In fact, one can show that $\sum_{\zeta} \frac{1}{1 - \lambda_{\zeta}(T_d)} = 1$.

- 3. *Endomorphisms of elliptic curves* Let $\Lambda \subset \mathbb{C}$ be a lattice. Suppose that $\alpha \in \mathbb{C}$ satisfies $\alpha \Lambda \subseteq \Lambda$.
 - (a) Show that α is actually an algebraic integer, of degree at most 2. (In other words, show that there are integers p and q such that $\alpha^2 + p\alpha + q = 0$.) (HINT: *Choose a basis* $\{\omega_1, \omega_2\}$ for Λ , and think of α as a linear transformation from Λ to itself. What can you say about its characteristic polynomial?)
 - (b) Suppose $\alpha \notin \mathbb{Z}$. Show that α is an imaginary quadratic integer.
- 4. *Multiplication by 2 on elliptic curves* Suppose *E* is given by a equation $y^2 = x^3 + ax + b$, and $P = (x, y) \in E(K)$ is not $\mathcal{O}, y = y(P) \neq 0$. Find a formula for 2*P*:
 - (a) What is the slope of the tangent line *L* to *E* at *P*?
 - (b) Find a formula for *L*.
 - (c) Find all points of intersection of *L* and *E*.

You should be able to get a formula for 2P of the form (g(x, y), h(x, y)), where g and h are rational functions. If the denominator of g vanishes for some particular point $P_0 = (x_0, y_0)$, we interpret this as $2P_0 = O$.

Professor Jeff Achter Colorado State University Math 619: Complex analysis II Fall 2011