Homework 6

Due: Friday, November 4

In the first two problems, we'll work with the power maps $p_{d}: \mathbb{G}_{m} \rightarrow \mathbb{G}_{m}$, the covering map $g: \mathbb{G}_{m} \rightarrow \mathbb{G}_{m}$ given by $z \mapsto z+z^{-1}$, and the Chebychev maps $T_{d}: \mathbb{C} \rightarrow \mathbb{C}$. Fix $d \geq 2$.

1. Fixed points of T_{d}
(a) Compute the fixed points of p_{d}.
(b) Use this to compute the fixed points of T_{d}. (Hint: You can express them using the cosine function; if $t \in \mathbb{R}$, what is $g(\exp (i t))$?)
2. Multipliers of T_{d} For the fixed points ζ of T_{d} you found in the previous problem, compute the multipler $\lambda_{\zeta}\left(T_{d}\right)=T_{d}^{\prime}(\zeta)$. (HINT: Differentiate the relation

$$
T_{d}\left(z+z^{-1}\right)=z^{d}+z^{-d}
$$

to find an expression for $T_{d}^{\prime}\left(z+z^{-1}\right)$.)
In fact, one can show that $\sum_{\zeta} \frac{1}{1-\lambda_{\zeta}\left(T_{d}\right)}=1$.
3. Endomorphisms of elliptic curves Let $\Lambda \subset \mathbb{C}$ be a lattice. Suppose that $\alpha \in \mathbb{C}$ satisfies $\alpha \wedge \subseteq \Lambda$.
(a) Show that α is actually an algebraic integer, of degree at most 2. (In other words, show that there are integers p and q such that $\alpha^{2}+p \alpha+q=0$.) (HINT: Choose a basis $\left\{\omega_{1}, \omega_{2}\right\}$ for Λ, and think of α as a linear transformation from Λ to itself. What can you say about its characteristic polynomial?)
(b) Suppose $\alpha \notin \mathbb{Z}$. Show that α is an imaginary quadratic integer.
4. Multiplication by 2 on elliptic curves Suppose E is given by a equation $y^{2}=x^{3}+a x+b$, and $P=(x, y) \in E(K)$ is not $\mathcal{O}, y=y(P) \neq 0$. Find a formula for $2 P$:
(a) What is the slope of the tangent line L to E at P ?
(b) Find a formula for L.
(c) Find all points of intersection of L and E.

You should be able to get a formula for $2 P$ of the form $(g(x, y), h(x, y))$, where g and h are rational functions. If the denominator of g vanishes for some particular point $P_{0}=\left(x_{0}, y_{0}\right)$, we interpret this as $2 P_{0}=\mathcal{O}$.

