Homework 5

Due: Monday, October 17
In these problems, we work with a lattice $\Lambda \subset \mathbb{C}$ generated by ω_{1} and ω_{2}.
Let D be a fundamental domain for Λ, and $C=C_{1}+C_{2}+C_{3}+C_{4}$ a contour around D, as below.

1. Suppose f is meromophic and \wedge-periodic. Show that f^{\prime} is, too.
2. Suppose f is meromorphic, \wedge-periodic, and has no poles or zeros along C. Show that $\int_{C} f(z) d z=0$.
3. Let h be a meromorphic function, and suppose $z_{0} \in \mathbb{C}, z_{0} \neq 0$. Show that

$$
\operatorname{res}_{z_{0}}\left(\frac{z h^{\prime}(z)}{h(z)}\right)=\operatorname{ord}_{z_{0}}(h) \cdot z_{0}
$$

4. Suppose f is meromorphic, Λ-periodic, and has no poles or zeros along C. Show that

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{C} \frac{z f^{\prime}(z)}{f(z)} d z \in \Lambda \tag{2}
\end{equation*}
$$

Note that the integrand $z f^{\prime}(z) / f(z)$ is not periodic.
You are welcome to take the following steps. You may want to use the fact that \log is actually a multifunction, so that if C is a contour from α to β, and if g is any continuous, nonvanishing function on C, then

$$
\int_{C} \frac{g^{\prime}(z)}{g(z)} d z=\left.\log (g(z))\right|_{\alpha} ^{\beta} \in(\log (\beta)-\log (\alpha))+2 \pi i \mathbb{Z} .
$$

You will probably have to explicitly parametrize the contours C_{j} in order to evaluate the integrals.
(a) Show that $\int_{C_{3}} \frac{z f^{\prime}(z)}{f(z)} d z=\int_{-C_{1}} \frac{z f^{\prime}\left(z+\omega_{2}\right)}{f\left(z+\omega_{2}\right)} d z+\omega_{2} \int_{C_{3}} \frac{f^{\prime}(z)}{f(z)} d z$. (HINT: $z f^{\prime}(z) / f(z)=(z-$ $\left.\left.\omega_{2}\right) f^{\prime}(z) / f(z)+\omega_{2} f^{\prime}(z) / f(z).\right)$
(b) Show that $\int_{C_{1}+C_{3}} \frac{z f^{\prime}(z)}{f(z)} d z \in 2 \pi i \omega_{2} \mathbb{Z}$.
(c) Show (2).
5. Suppose f is meromorphic, \wedge-periodic, and has no zeros or poles along C.

Suppose the only zeros of f in D are P_{1}, \cdots, P_{r}, and that f has a zero of order m_{i} at P_{i}. Similarly, suppose the only poles of f in D are Q_{1}, \cdots, Q_{s}, and that f has a pole of order n_{j} at Q_{j}. Show that

$$
\sum_{i=1}^{r} m_{i} P_{i} \equiv \sum_{j=1}^{s} n_{j} Q_{j} \bmod \wedge .
$$

