Homework 4 Due: Friday, October 7

1. Early in the course, we made the following provisional definition:

Let us call a family of (holomorphic) functions \mathcal{F} on a connected set Ω normal if, for every compact set $K \subset \Omega$ and every sequence $\{f_n\}$ of elements of \mathcal{F} , either:

- There exists a subsequence which is uniformly Cauchy. Specifically, there is a subsequence $\{f_{n_j}\}$ such that for every $\epsilon > 0$ there exists $N = N_{\epsilon}$ such that if j, k > N then $\left\|f_{n_j} f_{n_k}\right\|_{\kappa} < \epsilon$; or
- There is a uniformly divergent subsequence. Specifically, there is a subsequence $\{f_{n_j}\}$ such that f_{n_j} is nonvanishing on K; and for every $\epsilon > 0$ there exists $N = N_{\epsilon}$ such that if j > N, then $\left\| 1/f_{n_j} \right\|_{\kappa} < \epsilon$.

Prove or disprove:

A set of holomorphic functions on Ω is normal in this sense if and only if it's normal, as a subset of Hol (Ω, \mathbb{C}) , in the sense of [M, Chapter 3].

2. [M] 3-b

- 3. [M] 3-c
- 4. [M] 3-e

Read [M] 3-f.