Homework 3

Due: Monday, September 26
[M] refers to Milnor's Dynamics in one complex variable, third edition. Where appropriate, I will also indicate, using $\left[M_{1}\right]$, corresponding problem in the first edition of Milnor's notes, which is available on the arXiv

1. (a) $[\mathrm{M}]$ 1-d. (See also $\left.\left[\mathrm{M}_{1}\right] 1-10\right)$
(b) $[\mathrm{M}] 1-\mathrm{e} .\left(\left[\mathrm{M}_{1}\right] 1-12\right)$
2. Let $\Gamma \subset \mathbb{R}^{n}$ be an (additive) group of rank r. Thus, there are $\gamma_{1}, \cdots, \gamma_{r} \in \mathbb{Z}$ which are \mathbb{Z}-linearly independent such that

$$
\Gamma=\left\{\sum a_{i} \gamma_{i}: a_{i} \in \mathbb{Z}\right\} .
$$

Show that Γ is discrete $\Longleftrightarrow\left\{\gamma_{1}, \cdots, \gamma_{r}\right\}$ is \mathbb{R}-linearly independent.
3. Recall the Cayley transform

$$
\begin{aligned}
& \mathbb{H} \xrightarrow{F} \mathbb{D} \\
& z \longmapsto \frac{z-i}{z+i}
\end{aligned}
$$

Consider the Poincaré metric

$$
d s=2 \frac{|d z|}{1-|z|^{2}}
$$

on \mathbb{D}. Compute its pullback $F^{*} d s$ to \mathbb{H}.
4. A Riemannian metric can be used to define the length of a (parametrized) curve; if $\Omega \subset \mathbb{C}$ is a Riemann surface with metric $d s=\rho(z)|d z|$, and if $\gamma:[a, b] \rightarrow \Omega$ is a curve, then the length of γ is

$$
\ell(\gamma)=\ell_{\rho}(\gamma)=\int_{a}^{b} \rho(\gamma(t))\left|\gamma^{\prime}(t)\right| d t
$$

Conside \mathbb{D} with the Poincaré metric.
(a) Fix $0<b<1$, and consider the arc

$$
\begin{gathered}
{[0, b] \xrightarrow{\gamma} \mathbb{D}} \\
t \longmapsto
\end{gathered}
$$

Show that

$$
\ell(\gamma)=\log \frac{1+b}{1-b}
$$

In fact, $\operatorname{dist}(0, b)=\log \frac{1+b}{1-b}$.
(b) Suppose $z_{0} \in \mathbb{D}$. Show that

$$
\operatorname{dist}\left(0, z_{0}\right)=\log \frac{1+|z|}{1-|z|}
$$

(Hint: A rotation is an isometry)
(c) Suppose $z_{0}, z_{1} \in \mathbb{D}$. Show that

$$
\operatorname{dist}\left(z_{0}, z_{1}\right)=\log \frac{1+\left|\frac{z_{0}-z_{1}}{1 \bar{z}_{0} z_{1}}\right|}{1-\left|\frac{z_{0}-z_{1}}{1-\bar{z}_{0} z_{1}}\right|}
$$

(HINT: A Blaschke factor is an isometry.)
5. [M] 2-e. Feel free to make use of earlier problems in [M].

