Homework 2 Due: Friday, September 9

1. Consider the unit sphere $X = \{(a, b, c) : a^2 + b^2 + c^2 = 1\} \subset \mathbb{R}^3$. Let N = (0, 0, 1), S = $(0, 0, -1), U_N = X - \{N\}, U_S = X - \{S\}$. Consider the following three charts on X:

 $\phi_{\rm M}$

$$U_{N} \xrightarrow{q_{N}} \mathbb{C}$$

$$(a_{0}, b_{0}, c_{0}) \longmapsto \frac{a_{0} + ib_{0}}{1 - c_{0}}$$

$$U_{S} \xrightarrow{\phi_{S}} \mathbb{C}$$

$$(a_{0}, b_{0}, c_{0}) \longmapsto \frac{a_{0} + ib_{0}}{1 + c_{0}}$$

$$U_{S} \xrightarrow{\psi_{S}} \mathbb{C}$$

$$(a_{0}, b_{0}, c_{0}) \longmapsto \frac{a_{0} - ib_{0}}{1 + c_{0}}$$

(a) The inverse of ϕ_N is

$$\phi_N^{-1}(z) = \left(\frac{2\Re(z)}{|z|^2 + 1}, \frac{2\Im(z)}{|z|^2 + 1}, \frac{|z|^2 - 1}{|z|^2 + 1}\right).$$

Calculate $\phi_S^{-1}(z)$ and $\psi_S^{-1}(z)$.

- (b) Among the three charts $\{(U_N, \phi_N), (U_S, \phi_S), (U_S, \psi_S)\}$, one pair is compatible and the other two are not. Which is which? Why? (HINT: Remember that a function f is holomorphic if and only if $\partial_{\overline{z}} f = 0$; colloquially, a function is holomorphic if it doesn't involve any \overline{z} 's.)
- 2. As a set, the complex projective line \mathbb{P}^1 is defined as follows. Delete the origin from \mathbb{C}^2 , and then define an equivalence relation on the remaining set, by saying that $(a_0, a_1) \sim (b_0, b_1)$ if and only if there exists some $\lambda \in \mathbb{C}^{\times}$ so that $b_0 = \lambda a_0$ and $b_1 = \lambda a_1$. Tł

$$\mathbb{P}^1 = (\mathbb{C}^2 - \{0\}) / \sim,$$

and the equivalence class of (a_0, a_1) in \mathbb{P}^1 is denoted $[a_0, a_1]$. Consider the map

$$\mathbb{P}^{1} \xrightarrow{\alpha} \mathbb{R}^{3}$$

$$[z_{0}, z_{1}] \longmapsto \left(\frac{2\Re(z_{1}\overline{z_{0}})}{|z_{1}|^{2} + |z_{0}|^{2}}, \frac{2\Im(z_{1}\overline{z_{0}})}{|z_{1}|^{2} + |z_{0}|^{2}}, \frac{|z_{1}|^{2} - |z_{0}|^{2}}{|z_{1}|^{2} + |z_{0}|^{2}}\right).$$

Professor Jeff Achter Colorado State University Math 619: Complex analysis II Fall 2011

- (a) Show that this really is a function on \mathbb{P}^1 , i.e., if $\lambda \in \mathbb{C}^{\times}$, then $\alpha([\lambda z_0, \lambda z_1]) = \alpha([z_0, z_1])$.
- (b) Show that the image of α is the unit sphere $a^2 + b^2 + c^2 = 1$. (In fact, α is a homeomorphism.) (HINT: *Remember that for any* $w \in \mathbb{C}$, $\Re(w) = \frac{w + \overline{w}}{2}$, $\Im(w) = \frac{w - \overline{w}}{2i}$, and $|w|^2 = w\overline{w}$.)
- 3. For $j \in \{0, 1\}$, let $V_j = \{[z_0, z_1] : z_j \neq 0\} \subset \mathbb{P}^1$; and define the charts (V_j, ϕ_j) by

$$V_j \xrightarrow{\phi_j} \mathbb{C}$$
$$[z_0, z_1] \longmapsto \frac{z_{1-j}}{z_j}.$$

Endow the unit sphere *X* with the compatible charts you found in problem (1). Show that the map α from problem (2) is holomorphic.