Homework 2

Due: Friday, September 9

1. Consider the unit sphere $X=\left\{(a, b, c): a^{2}+b^{2}+c^{2}=1\right\} \subset \mathbb{R}^{3}$. Let $N=(0,0,1), S=$ $(0,0,-1), U_{N}=X-\{N\}, U_{S}=X-\{S\}$. Consider the following three charts on X :

$$
\begin{gathered}
U_{N} \xrightarrow{\phi_{N}} \mathbb{C} \\
\left(a_{0}, b_{0}, c_{0}\right) \longmapsto \frac{a_{0}+i b_{0}}{1-c_{0}} \\
U_{S} \xrightarrow[\phi_{S}]{\longrightarrow} \\
\left(a_{0}, b_{0}, c_{0}\right) \longmapsto \frac{a_{0}+i b_{0}}{1+c_{0}} \\
U_{S} \xrightarrow[\psi_{S}]{\longrightarrow} \\
\left(a_{0}, b_{0}, c_{0}\right) \longmapsto \frac{a_{0}-i b_{0}}{1+c_{0}}
\end{gathered}
$$

(a) The inverse of ϕ_{N} is

$$
\phi_{N}^{-1}(z)=\left(\frac{2 \mathfrak{R}(z)}{|z|^{2}+1}, \frac{2 \Im(z)}{|z|^{2}+1}, \frac{|z|^{2}-1}{|z|^{2}+1}\right) .
$$

Calculate $\phi_{S}^{-1}(z)$ and $\psi_{S}^{-1}(z)$.
(b) Among the three charts $\left\{\left(U_{N}, \phi_{N}\right),\left(U_{S}, \phi_{S}\right),\left(U_{S}, \psi_{S}\right)\right\}$, one pair is compatible and the other two are not. Which is which? Why? (Hint: Remember that a function f is holomorphic if and only if $\partial_{\bar{z}} f=0$; colloquially, a function is holomorphic if it doesn't involve any \bar{z}^{\prime} s.)
2. As a set, the complex projective line \mathbb{P}^{1} is defined as follows. Delete the origin from \mathbb{C}^{2}, and then define an equivalence relation on the remaining set, by saying that $\left(a_{0}, a_{1}\right) \sim\left(b_{0}, b_{1}\right)$ if and only if there exists some $\lambda \in \mathbb{C}^{\times}$so that $b_{0}=\lambda a_{0}$ and $b_{1}=\lambda a_{1}$.
Thus,

$$
\mathbb{P}^{1}=\left(\mathbb{C}^{2}-\{0\}\right) / \sim,
$$

and the equivalence class of $\left(a_{0}, a_{1}\right)$ in \mathbb{P}^{1} is denoted $\left[a_{0}, a_{1}\right]$.
Consider the map

$$
\begin{aligned}
& \mathbb{P}^{1} \xrightarrow{\alpha} \mathbb{R}^{3} \\
& {\left[z_{0}, z_{1}\right] \longmapsto\left(\frac{2 \mathfrak{R}\left(z_{1} \overline{z_{0}}\right)}{\left|z_{1}\right|^{2}+\left|z_{0}\right|^{2}}, \frac{2 \Im\left(z_{1} \overline{z_{0}}\right)}{\left|z_{1}\right|^{2}+\left|z_{0}\right|^{2}}, \frac{\left|z_{1}\right|^{2}-\left|z_{0}\right|^{2}}{\left|z_{1}\right|^{2}+\left|z_{0}\right|^{2}}\right) .}
\end{aligned}
$$

(a) Show that this really is a function on \mathbb{P}^{1}, i.e., if $\lambda \in \mathbb{C}^{\times}$, then $\alpha\left(\left[\lambda z_{0}, \lambda z_{1}\right]\right)=\alpha\left(\left[z_{0}, z_{1}\right]\right)$.
(b) Show that the image of α is the unit sphere $a^{2}+b^{2}+c^{2}=1$. (In fact, α is a homeomorphism.) (HiNT: Remember that for any $w \in \mathbb{C}, \mathfrak{R}(w)=\frac{w+\bar{w}}{2}, \mathfrak{I}(w)=\frac{w-\bar{w}}{2 i}$, and $\left.|w|^{2}=w \bar{w}.\right)$
3. For $j \in\{0,1\}$, let $V_{j}=\left\{\left[z_{0}, z_{1}\right]: z_{j} \neq 0\right\} \subset \mathbb{P}^{1}$; and define the charts $\left(V_{j}, \phi_{j}\right)$ by

$$
\begin{gathered}
V_{j} \xrightarrow{\phi_{j}} \mathbb{C} \\
{\left[z_{0}, z_{1}\right] \longmapsto \frac{z_{1-j}}{z_{j}} .}
\end{gathered}
$$

Endow the unit sphere X with the compatible charts you found in problem (1). Show that the map α from problem (2) is holomorphic.

