Homework 1

Due: Friday, September 2

1. Let $p(z)$ be a nonconstant polynomial. Show that the Julia set $J(z)$ is bounded.
2. Let $p(z)$ be a polynomial of degree at least two. Show that $J(p)$ is nonempty:

Suppose the Fatou set $F(p)$ is all of \mathbb{C}, so that there is an increasing sequence $\left\{n_{j}\right\}$ such that $\left\{p^{\left.\circ{ }^{\circ n_{j}}\right\}}\right.$ converges uniformly on \mathbb{C}. (This is a little hard to show given our foundations, so just assume this is implied by the assumption $F(p)=\mathbb{C}$.)
(a) Show that there is some index k and a compact set $K \subset \mathbb{C}$ such that if $z \in \mathbb{C}-K$ and $j>k$, then $p^{\circ n_{j}}(z) \neq 0$.
(b) Show that for $j>k$, the number of zeros of $p^{\circ n_{j}}$, counted with multiplicity, is same as the number of zeros of $p^{\circ n_{k}}$. (Hint: Use the argument principle and a circular contour whose interior contains K.)
(c) Derive a contradiction, and thus conclude $J(p) \neq \emptyset$.
3. Consider the polynomial $p(z)=z^{2}-2$. Let I be the real interval $I=[-2,2] \subset \mathbb{C}$.
(a) Show that $p(I)=I$.
(b) Suppose $x \in \mathbb{R}-I \subset \mathbb{C}$. Show that

$$
\lim _{n \rightarrow \infty}\left|p^{\circ n}(x)\right|=\infty
$$

(c) [Possibly much harder] Suppose $z \in \mathbb{C}-I$. Show that

$$
\lim _{n \rightarrow \infty}\left|p^{\circ n}(z)\right|=\infty .
$$

