Homework 1 Due: Friday, September 2

- 1. Let p(z) be a nonconstant polynomial. Show that the Julia set J(z) is bounded.
- 2. Let p(z) be a polynomial of degree at least two. Show that J(p) is nonempty:

Suppose the Fatou set F(p) is all of \mathbb{C} , so that there is an increasing sequence $\{n_j\}$ such that $\{p^{\circ n_j}\}$ converges uniformly on \mathbb{C} . (This is a little hard to show given our foundations, so just assume this is implied by the assumption $F(p) = \mathbb{C}$.)

- (a) Show that there is some index *k* and a compact set $K \subset \mathbb{C}$ such that if $z \in \mathbb{C} K$ and j > k, then $p^{\circ n_j}(z) \neq 0$.
- (b) Show that for j > k, the number of zeros of $p^{\circ n_j}$, counted with multiplicity, is same as the number of zeros of $p^{\circ n_k}$. (HINT: *Use the argument principle and a circular contour whose interior contains K.*)
- (c) Derive a contradiction, and thus conclude $J(p) \neq \emptyset$.
- 3. Consider the polynomial $p(z) = z^2 2$. Let *I* be the real interval $I = [-2, 2] \subset \mathbb{C}$.
 - (a) Show that p(I) = I.
 - (b) Suppose $x \in \mathbb{R} I \subset \mathbb{C}$. Show that

$$\lim_{n\to\infty}|p^{\circ n}(x)|=\infty.$$

(c) [*Possibly much harder*] Suppose $z \in \mathbb{C} - I$. Show that

$$\lim_{n\to\infty}|p^{\circ n}(z)|=\infty.$$