Homework 9

Due ${ }^{(*)}$: Friday, October 19
(*) You only have to hand in the last problem. Use this time to think about the interconnections between $\left.^{(}\right)$ line bundles, sections and functions. Please stop by if you have questions!

1. Let $X=V / \Lambda$ be an elliptic curve. Suppose that \mathcal{L} is a line bundle on X corresponding to the following action of Λ on $\mathcal{L}_{\text {triv }}=V \times \mathbb{C}$:

$$
\begin{aligned}
& \Lambda \times(V \times \mathbb{C}) \longrightarrow V \times \mathbb{C} \\
& \quad \lambda \times(z, t) \longmapsto\left(z+\lambda, \beta_{\lambda}(z) \cdot t\right)
\end{aligned}
$$

Similarly, suppose \mathcal{M} corresponds to $(z, t) \mapsto\left(z+\lambda, \gamma_{\lambda}(z)\right) \cdot t$.
(a) What action corresponds to the tensor product $\mathcal{L} \otimes \mathcal{M}$?
(b) Suppose s is a section of \mathcal{L} and t is a section of \mathcal{M}. Convince yourself that $s \cdot t$ is a section of $\mathcal{L} \otimes \mathcal{M}$. What sort of transformation rule does the function $\theta_{s \cdot t}$ satisfy?
(c) Relate this to Homework 6, problem 3.
2. Fix a lattice $\Lambda=\Lambda_{\tau}$. Fix a natural number $\ell \geq 2$. Let $T=\left(\left(\frac{1}{\ell} \mathbb{Z}\right) / \mathbb{Z}\right) \times\left(\left(\frac{1}{\ell} \mathbb{Z}\right) / \mathbb{Z}\right)$. For each $(a, b) \in T$, define

$$
\theta_{a, b}^{*}(z)=\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](\ell z) .
$$

(a) Show that the functions $\left\{\theta_{a, b}^{*}(z):(a, b) \in T\right\}$ are theta functions of the same type with respect to Λ. Therefore, they are all sections of the same line bundle \mathcal{L}_{ℓ} on the elliptic curve $X=V / \Lambda$.
(b) In class, we saw that if \mathcal{M} is a line bundle on complex manifold Y, then a collection of sections of \mathcal{M} defines a map from Y into some projective space. Convince yourself that the embedding $\alpha: X \hookrightarrow \mathbb{P}^{3}$ arises in this way.
3. Let $V=\mathbb{C}^{2}$ be a two-dimensional complex vector space

A lattice $\Lambda \subset V$ is not simple if there is a decomposition $V=W_{1} \oplus W_{2}$, a sum of onedimensional complex subspaces, such that

$$
\Lambda=\left(\Lambda \cap W_{1}\right) \oplus\left(\Lambda \cap W_{2}\right)
$$

Show that there are lattices which are simple.
(Hint: Briefly, think of V as a vector space over \mathbb{R}. If $W \subset V$ is a real subspace, then W is also a complex subspace if and only if it is stable under multiplication by i. Compare Debarre exercise 1.2.)

Extra credit: Let $X=\mathbb{C} / \wedge$ be an elliptic curve. There is a line bundle \mathcal{L} on X, and sections s_{0}, s_{1}, s_{2} of \mathcal{L}, which give rise to the Weierstrass embedding $X \hookrightarrow \mathbb{P}^{2}$. Which line bundle is it? Explain. (Hint: See Debarre, Proposition 2.12).

