Homework 8
 Due: Friday, October 12

In contravention of all sense and custom, I've been writing transition maps backwards. Typically, one arranges things so that $g_{\alpha \beta}$ is the transition function from U_{β} to U_{α}, which unfortunately is the opposite of how I've been writing it. In this problem set, I will explicitly write things like $g U_{\beta} \leftarrow U_{\alpha}$ to move from U_{α}-coordinates to U_{β}-coordinates. In particular, if a line bundle \mathcal{L} corresponds to data $\left\{U_{\alpha}, g U_{\beta} \leftarrow U_{\alpha}\right\}$, then a section s of \mathcal{L} corresponds to holomorphic functions $s_{\alpha} \in \mathcal{H}\left(U_{\alpha}\right)$ such that, on $U_{\alpha} \cap U_{\beta}$, we have

$$
s_{\beta}=g u_{\beta} \leftarrow u_{\alpha} \cdot s_{\alpha} .
$$

1. $\mathcal{O}_{\mathbb{P}^{n}}(-1)$ Recall that we have identified each point $P=\left[a_{0}, \cdots, a_{n}\right] \in \mathbb{P}^{n}$ with a line L_{P} in \mathbb{C}^{n+1}; then $\mathcal{O}_{\mathbb{P}^{n}}(-1)$, as a set, is

$$
\mathcal{O}_{\mathbb{P}^{n}}(-1)=\left\{(P, s) \in \mathbb{P}^{n} \times \mathbb{C}^{n+1}: s \in L_{P}\right\} .
$$

Define trivializations on the standard open patches U_{i} :

$$
\begin{array}{r}
\mathcal{O}_{\mathbb{P}^{n}}(-1) \mid U_{i} \xrightarrow{\psi_{i}} U_{i} \times \mathbb{C} \\
(P, s) \longmapsto\left(P, s_{i}\right) \\
\left(P, \frac{\lambda}{a_{i}} P\right) \longleftrightarrow(P, \lambda)
\end{array}
$$

where $\frac{\lambda}{a_{i}} P=\left(\lambda \frac{a_{0}}{a_{i}}, \cdots, \lambda \frac{a_{n}}{a_{i}}\right)$. (Note that this is well-defined!)
Show that the transition maps are

$$
g u_{j \leftarrow u_{i}}\left(\left[a_{0}, \cdots, a_{n}\right]\right)=\frac{a_{j}}{a_{i}} .
$$

2. $\mathcal{O}_{\mathbb{P}^{n}(1)}$ If $\mathcal{L} \leadsto\left\{U_{\alpha}, g_{U_{\beta} \leftarrow U_{\alpha}}\right\}$, its dual \mathcal{L}^{\vee} is the line bundle with data $\left\{U_{\alpha,} \frac{1}{\delta u_{\beta} \leftarrow U_{\alpha}}\right\}$.
(a) Describe the transition functions for $\mathcal{O}_{\mathbb{P}^{n}}(1):=\mathcal{O}_{\mathbb{P}^{n}}(-1)^{\vee}$.
(b) Fix numbers b_{0}, \cdots, b_{n}. For each $0 \leq i \leq n$, define a holomorphic function on U_{i} :

$$
L_{i}\left(\left[a_{0}, \cdots, a_{n}\right]\right)=\sum_{k} b_{k} \frac{a_{k}}{a_{i}} .
$$

Show that the data $\left\{L_{i}: 0 \leq i \leq n\right\}$ defines a section of $\mathcal{O}_{\mathbb{P}^{n}}(1)$.

In fact: sections of $\mathcal{O}_{\mathbb{P}^{n}}(1)$ are in bijection with linear homogeneous polynomials in X_{0}, \cdots, X_{n}.
3. $\mathcal{O}_{\mathbb{P}^{n}}(2)$ Let $\mathcal{O}_{\mathbb{P}^{n}}(2)=\mathcal{O}_{\mathbb{P}^{n}}(1) \otimes \mathcal{O}_{\mathbb{P}^{n}}(1)$.
(a) Use the results of the previous question to describe some sections of $\mathcal{O}_{\mathbb{P}^{n}}(2)$.
(b) If $r \geq 1$, let $\mathcal{O}_{\mathbb{P}^{n}}(r)=\mathcal{O}_{\mathbb{P}^{n}}(1)^{\otimes r}$. Give a (conjectural) description of the sections of $\mathcal{O}_{\mathbb{P}^{n}(r)}$.
4. For use later:
(a) Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \oplus \mathbb{C}$. In fact, the two copies of \mathbb{C} on the right-hand side can be indexed by the two \mathbb{R}-linear isomorphisms $\mathbb{C} \rightarrow \mathbb{C}$.
(b) Suppose V is a complex vector space. Since there's a unique inclusion $\mathbb{R} \hookrightarrow \mathbb{C}, V$ is also a real vector space. Describe the $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$-module $V \otimes_{\mathbb{R}} \mathbb{C}$.

