Homework 8 Due: Friday, October 12

In contravention of all sense and custom, I've been writing transition maps backwards. Typically, one arranges things so that $g_{\alpha\beta}$ is the transition function from U_{β} to U_{α} , which unfortunately is the opposite of how I've been writing it. In this problem set, I will explicitly write things like $g_{U_{\beta}\leftarrow U_{\alpha}}$ to move from U_{α} -coordinates to U_{β} -coordinates. In particular, if a line bundle \mathcal{L} corresponds to data $\{U_{\alpha}, g_{U_{\beta}\leftarrow U_{\alpha}}\}$, then a section s of \mathcal{L} corresponds to holomorphic functions $s_{\alpha} \in \mathcal{H}(U_{\alpha})$ such that, on $U_{\alpha} \cap U_{\beta}$, we have

$$s_{\beta} = g_{U_{\beta} \leftarrow U_{\alpha}} \cdot s_{\alpha}.$$

1. $\mathcal{O}_{\mathbb{P}^n}(-1)$ Recall that we have identified each point $P = [a_0, \cdots, a_n] \in \mathbb{P}^n$ with a line L_P in \mathbb{C}^{n+1} ; then $\mathcal{O}_{\mathbb{P}^n}(-1)$, as a set, is

$$\mathcal{O}_{\mathbb{P}^n}(-1) = \{ (P,s) \in \mathbb{P}^n \times \mathbb{C}^{n+1} : s \in L_P \}.$$

Define trivializations on the standard open patches *U_i*:

$$\mathcal{O}_{\mathbb{P}^n}(-1)|_{U_i} \xrightarrow{\psi_i} U_i \times \mathbb{C}$$
$$(P,s) \longmapsto (P,s_i)$$
$$(P,\frac{\lambda}{a_i}P) \longleftarrow (P,\lambda)$$

where $\frac{\lambda}{a_i}P = (\lambda \frac{a_0}{a_i}, \dots, \lambda \frac{a_n}{a_i})$. (Note that this is well-defined!) Show that the transition maps are

$$g_{U_j\leftarrow U_i}([a_0,\cdots,a_n])=\frac{a_j}{a_i}.$$

2. $\mathcal{O}_{\mathbb{P}^n}(1)$ If $\mathcal{L} \iff \{U_{\alpha}, g_{U_{\beta} \leftarrow U_{\alpha}}\}$, its dual \mathcal{L}^{\vee} is the line bundle with data $\{U_{\alpha}, \frac{1}{g_{U_{\beta} \leftarrow U_{\alpha}}}\}$.

- (a) Describe the transition functions for $\mathcal{O}_{\mathbb{P}^n}(1) := \mathcal{O}_{\mathbb{P}^n}(-1)^{\vee}$.
- (b) Fix numbers b_0, \dots, b_n . For each $0 \le i \le n$, define a holomorphic function on U_i :

$$L_i([a_0,\cdots,a_n])=\sum_k b_k \frac{a_k}{a_i}.$$

Show that the data $\{L_i : 0 \le i \le n\}$ defines a section of $\mathcal{O}_{\mathbb{P}^n}(1)$.

Professor Jeff Achter Colorado State University M619: Complex analysis II Fall 2007 In fact: sections of $\mathcal{O}_{\mathbb{P}^n}(1)$ are in bijection with linear homogeneous polynomials in X_0, \cdots, X_n .

3.
$$\mathcal{O}_{\mathbb{P}^n}(2)$$
 Let $\mathcal{O}_{\mathbb{P}^n}(2) = \mathcal{O}_{\mathbb{P}^n}(1) \otimes \mathcal{O}_{\mathbb{P}^n}(1)$.

- (a) Use the results of the previous question to describe some sections of $\mathcal{O}_{\mathbb{P}^n}(2)$.
- (b) If $r \ge 1$, let $\mathcal{O}_{\mathbb{P}^n}(r) = \mathcal{O}_{\mathbb{P}^n}(1)^{\otimes r}$. Give a (conjectural) description of the sections of $\mathcal{O}_{\mathbb{P}^n}(r)$.
- 4. For use later:
 - (a) Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \oplus \mathbb{C}$. In fact, the two copies of \mathbb{C} on the right-hand side can be indexed by the two \mathbb{R} -linear isomorphisms $\mathbb{C} \to \mathbb{C}$.
 - (b) Suppose *V* is a complex vector space. Since there's a unique inclusion $\mathbb{R} \hookrightarrow \mathbb{C}$, *V* is also a real vector space. Describe the $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ -module $V \otimes_{\mathbb{R}} \mathbb{C}$.

Professor Jeff Achter Colorado State University M619: Complex analysis II Fall 2007