Homework 7

Due: Friday, October 5

Fix a lattice $\Lambda=\Lambda_{\tau}$. Theta functions can be used to construct meromorphic functions on $E=\mathbb{C} / \wedge$ in a few different ways:

1. Suppose θ_{1} and θ_{2} have the same type. Show that the function $\frac{\theta_{1}}{\theta_{2}}$ is Λ-periodic, so that it defines a function on E.
2. Let θ be a theta function. Fix numbers $P_{1}, \cdots, P_{n}, Q_{1}, \cdots, Q_{n} \in \mathbb{C}$ such that $\sum P_{j}=\sum Q_{j}$, and $\left\{P_{1}, \cdots, P_{n}\right\} \cap\left\{Q_{1}, \cdots, Q_{n}\right\}=\emptyset$. Consider the function

$$
f(z)=\frac{\theta\left(z-P_{1}\right) \theta\left(z-P_{2}\right) \cdots \theta\left(z-P_{n}\right)}{\theta\left(z-Q_{1}\right) \theta\left(z-Q_{2}\right) \cdots \theta\left(z-Q_{n}\right)} .
$$

(a) Show that f is Λ-periodic.
(b) Describe the zeros and poles of f.
(c) Is your work in (b) compatible with HW3\#4? Explain.
3. Consider the function

$$
g(z)=\frac{\partial^{2}}{\partial z^{2}} \log \vartheta\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right](z) .
$$

(a) Describe all poles of $g(z)$.
(b) By HW6\#4, $g(z)$ is Λ-periodic. Therefore, $g(z) \in \mathbb{C}\left(\wp(z), \wp^{\prime}(z)\right)$. Which function is it? Say as much as you can, even if you can't answer this exactly.
4. In class, we found that for any $x \in \mathbb{C}$,

$$
\begin{aligned}
\theta_{00}(0)^{2} \theta_{00}(x)^{2} & =\theta_{01}(0)^{2} \theta_{01}(x)^{2}+\theta_{10}(0)^{2} \theta_{10}(x)^{2} \\
\theta_{10}(0)^{2} \theta_{01}(x)^{2}-\theta_{01}(0)^{2} \theta_{10}(x)^{2}+\theta_{00}(0)^{2} \theta_{11}(x)^{2} & =2 \theta_{00}(0)^{2} \theta_{11}(x)^{2}
\end{aligned}
$$

The second equation can of course be replaced by

$$
\theta_{00}(0)^{2} \theta_{11}(x)^{2}=\theta_{10}(0)^{2} \theta_{01}(x)^{2}-\theta_{01}(0)^{2} \theta_{10}(x)^{2}
$$

So, let W_{0}, \cdots, W_{3} be coordinates on \mathbb{P}^{3}. This shows that the image of

$$
\begin{aligned}
& \mathbb{C} / \Lambda \xrightarrow{\alpha=\alpha_{2, \tau}} \\
& x \mathbb{P}^{3} \\
& x\left.\longmapsto \theta_{00}(2 x), \theta_{01}(2 x), \theta_{10}(2 x), \theta_{11}(2 x)\right]
\end{aligned}
$$

lies in the vanishing locus of the (homogeneous!) polynomials

$$
\begin{aligned}
& F=\theta_{00}(0)^{2} W_{0}^{2}-\left(\theta_{01}(0)^{2} W_{1}^{2}+\theta_{10}(0)^{2} W_{2}^{2}\right) \\
& G=\theta_{00}(0)^{2} W_{3}^{2}-\left(\theta_{10}(0)^{2} W_{1}^{2}-\theta_{01}(0)^{2} W_{2}^{2}\right)
\end{aligned}
$$

Let $Y \subset \mathbb{P}^{3}$ be the vanishing locus of F and G. In this problem we'll show that α is surjective. Recall that a hyperplane in \mathbb{P}^{3} is the vanishing locus of some linear polynomial $\sum a_{i} W_{i}$, where not all a_{i} are zero.
(a) If you've taken 672 , show that if H is a hyperplane, then $\# H \cap Y \leq 4$. If you haven't, just accept this.
(b) Fix numbers a_{0}, \cdots, a_{3}, not all zero. Consider the function

$$
f(x)=a_{0} \theta_{00}(x)+a_{1} \theta_{01}(x)+a_{2} \theta_{10}(x)+a_{3} \theta_{10}(x) .
$$

Show that f has exactly four zeros in any fundamental domain for $2 \wedge$.
(c) Show that $\alpha: \mathbb{C} / \Lambda \rightarrow Y$ is surjective.

